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AN APPROACH TO DESIGNING AN UNMANNED HELICOPTER  
 

AUTOPILOT USING GENETIC ALGORITHMS AND  
 

SIMULATED ANNEALING 
 
 

Namir Aldawoodi 
 
 

ABSTRACT 
 
 

  This dissertation investigates the application of Genetic Algorithms (GA) and 

Simulated Annealing (SA) based search techniques to the problem of deriving an auto-

pilot that can emulate a human operator or other controller flying a Small unmanned 

Helicopter (SH). A Helicopter is a type of Vertical Take Off and Landing Vehicle 

(VTOL). The maneuvers are none aggressive, mild maneuvers, that include u-turns, 

ascending spirals and other none extreme flight paths.  

 

 The pilot of the helicopter is a Fuzzy logic Controller (FC) pilot; it is assumed 

that the pilot executes the maneuvers with skill and precision. The FC pilot is given set- 

points (points in space) that represent a path/flight maneuver and is expected to follow 

them as closely as possible. Input/Output data is then collected from the FC pilot 

executing maneuvers in real time. The collected data include control signals from the FC 

pilot to the SH and the resulting output signals from the SH that include time, x, y, z 

coordinates and yaw (the angle of the SH relative to the x, y axis). The Genetic 

Algorithm/Simulated Annealing based search algorithm attempts to generate a set of 

mathematical formulas that best map the collected data. The search algorithm presented 

in this dissertation was implemented in Java and has a JSP (Java Server Pages) graphical 

user interface. 
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 The results obtained show that the search technique developed; termed Genetic 

Algorithm / Simulated Annealing controller or (GA/SA) controller allows for the 

derivation of accurate SH control equations.  The results include performance 

quantification of the algorithm in the derivation phase and the testing phase. Graphs are 

included; they demonstrate the accuracy and path data of the GA/SA controller as 

compared to the FC pilot and other controllers. The final results showing the formulas 

found are also included.  

 

 A technique was also developed during this dissertation to encode the genetic 

strings that represent the candidate formulas during the search. This technique allowed 

the combination of strings to yield new formulas that are valid. The results can be used 

by other investigators to expand the complexity of the formulas generated during the 

search. The technique has advantages such as the ability to operate in open-loop 

conditions and is able to fly the SH without the need for set-point data and without the 

need for GPS or some other location determination technology. The technique may be 

used as a backup controller that can take over control of a helicopter in case the main 

controller is unable to function due to a GPS malfunction or another situation where 

accurate positioning data cannot be obtained.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Motivation 

 

  An unmanned aerial vehicle (UAV) is a pilotless aircraft controlled remotely or 

autonomously [1]. Vertical Take-Off and Landing (VTOL) vehicles are a subclass of 

UAVs that can take off and land vertically [2]. Small unmanned helicopters (SH) are a 

type of VTOL with important civil and military applications. A small unmanned 

helicopter can be flown by a ground control unit or by an auto pilot normally placed 

onboard [1]. Autopilots designs vary, however, as they need positioning data to achieve 

the task of controlling the helicopter [3]. Positioning information can be obtained from 

gyros, compasses, and other inertial navigation systems that determine location by dead 

reckoning. This is a navigation method that determines its current position by 

calculating assumed distance and direction moved since the last known location [4]. 

More modern methods include Global Positioning Systems (GPS),   which use a system 

of satellites, computers, and receivers to determine location. It accomplishes this by 

comparing the time it takes for signals from different satellites to reach the receiver. 

There are also hybrid systems that combine dead reckoning with GPS to create a more 

reliable navigation system.  

 

 In addition to position information, an autopilot will require destination data or 

way points that define a desired path to a destination [6]. However, current autopilots 

have limitation, as they may encounter situations where 3-D positioning information is 

lost or unavailable. Another limitation is the need for way points to determine the next 

path to follow to a desired destination; should the way points become difficult to locate, 



www.manaraa.com

 2

then the autopilot may not be able to reach its goal. In addition, some autopilot systems 

require intervention or assistance from a ground unit; hence, if the ground link is lost, 

the autopilot may not be able to effectively control the helicopter [7]. Currently, there is 

a lack of a viable position and way point independent backup autopilot. The main 

motivation of this research is to develop an independent backup autopilot that does not 

require location or path data to reach a predetermined destination. This new autopilot 

would serve as a backup to the main autopilot. The proposed system is independent of 

the type of autopilot onboard adding another level of redundancy and safety.    

 

1.2 Problem Statement 

 

   It is the objective of this dissertation to investigate and quantify the ability of 

Genetic Algorithms (GA) and Simulated Annealing (SA) based search techniques to 

solve the problem of deriving an auto-pilot not requiring location or path data while 

directing a small unmanned helicopter to a pre-established destination. The maneuvers 

executed by this autopilot are non-aggressive mild maneuvers that include u-turns, 

spirals, and other non-extreme flight paths. As no unique answer exists, soft computing 

techniques will be used to generate mathematical equations that emulate the pilot’s 

commands; the GA/SA derived controller (GSC) is expected to provide autonomous 

control of the small unmanned helicopter. This GSC, or automated pilot, can be 

onboard or on the ground—the location of the latter and the way it interfaces with the 

helicopter is not relevant to this research. The automated pilot is responsible for 

following a flight path generated by another control module such as the Fuzzy logic 

Controller (FC) pilot. The performance of this GSC autopilot module will be compared 

to other automated pilot systems such as a Proportional-Integral-Derivative (PID) 

controller, the FC controller, and other automated controllers. 

 

  The data is collected from an FC pilot executing a set of pre-selected maneuvers 

in real time. It is assumed that the pilot executes the maneuvers with skill and precision. 

The collected data include control signals from the pilot to the SH and the resulting 
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sensor output signals from the SH that include flight time, x, y, z coordinates and yaw.  

The collected data is used to derive a pilot as well as test the performance of the new 

pilot. The GA/SA based search algorithm attempts to generate a mathematical formula 

that best emulates the FC controller outputs using flight time as the sole input.  

 

1.3 Problem Relevance 

 

  This problem is relevant as there currently is no technology that can pilot a SH 

without positioning and path data as presented in this dissertation. The proposed pilot 

can function without the need for GPS or other positing information. Furthermore, the 

pilot needs no path data to reach a pre-determined destination. The proposed pilot 

requires only flight time as input. As such, the proposed pilot will add a layer of 

redundancy to unmanned small helicopters. This redundancy makes this type of UAV 

more likely to recover from a failure of positioning or path data system.  

 

  The generated formulas model the system and enhance autonomous vehicle and 

unmanned vehicle navigation. It accomplishes this by providing a methodology to 

approximate the actions of human or automated SH operators, and captures that 

knowledge in a formula that can be used to control a SH. The generated formula allows 

for mathematical modeling of the system. The mathematical model allows for further 

study and analysis of the helicopter system. There may also be future applications 

related to missile avoidance systems that require a pseudo open loop control of a jet or a 

UAV. 

 

1.4 Applications of Unmanned Helicopters  

 

   Several applications exist where unmanned helicopters are used; these include 

tasks considered Dull, Dirty and Dangerous [8]. Dull operations include missions that 

last a long time, for example, long intelligence gathering and surveillance flights. In 

these types of missions, the advantage of a UAV includes its alertness at the end of the 
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mission similar to the start of the mission; also, it does not suffer from human fatigue. 

Dirty missions involve operations in areas that may be hazardous to humans such as 

biologically or chemically contaminated locations. Dangerous missions include 

missions that pose a danger to humans such as combat missions.   

 

  Small unmanned helicopters have military applications that include 

reconnaissance, surveillance, target acquisition, communications relay, and re-supply 

[10]. For example, the A160 Hummingbird UAV differs from other helicopters on the 

market as it can reach higher altitudes and hover for an extended period of time. 

Additionally, it can travel further and operate at a much higher ceiling than current 

helicopters (30,000 feet vs. 20,000 feet) [11]. It also operates much more quietly and 

features a unique speed rotor that adjusts the speed of the main rotor at different 

altitudes and air speeds [11]. The A160 was developed by Frontier Systems Inc., of 

Irvine, California; the company was later purchased by Boeing in May 2004. The 

A160’s unique characteristics are designed to meet U.S. Armed Forces’ current and 

emerging requirements for military autonomous helicopters.   

 

  There are also civilian applications where small autonomous helicopters are 

used; some of the applications include reconnaissance and support in natural disaster 

areas, police observation, firefighting, agricultural chemical spraying, broadcasting and 

other applications [12]. One example of a civilian use helicopter is the Yamaha RMAX 

used for agriculture, as well as research. Figure 1.1 from Bernard Microsystems 

Limited (a UAV production firm) shows the increased use of agricultural helicopters in 

Japan. There exist significant reasons for this as crop-dusting can be hazardous to 

humans [13]. 
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Figure 1.1: Unmanned Agricultural Helicopter Use in Japan. (source: 

http://www.barnardmicrosystems.com/L4E_uav_market.htm) 
                                   

 

1.5 Dealing with In-Flight Failures  

 

  As with any complex system, the risk of mechanical, electrical or other failure 

always exists, one that can compromise the mission and result in the UAV becoming 

lost. Therefore, in-flight failures and crashes increase the cost of unmanned air vehicles, 

and limit their availability for missions [14]. The Predator, a U.S. made military UAV, 

had a crash rate of 32.8 per 100,000 flight hours in 2002 [14]. In 2003, the Predator 

rate increased to 49.6 per 100,000 flight hours; comparably, another US military UAV, 

the Global Hawk, had an accident rate of 167.7 per 100,000 flight hours [14].  In 

contrast, the F-16 had a 2003 crash rate of 3.5 per 100,000 flight hours [14].  A 

Pentagon report recommends a UAV failure rate of 25 per 100,000 flight hours or less 

by the year 2009, and 15 per 100,000 flight hours by the year 2015 [14]. However, 

improving UAV reliability can be costly and offset the cost advantage of UAVs over 
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manned aircraft; one such way to boost reliability is to add redundancy [14]. The 

NASA Global Hawk has built-in redundancy in the form of four onboard GPS 

navigation systems.  

 

  Navigation applications for UAVs require a higher level of robustness. A 

navigation system must degrade gracefully regardless of sensor failures [15].  High-

grade, non-UAV navigation systems utilize high-performance sensors able to use 

inertial navigation alone and without feedback from other sources such as GPS [15]. 

However, low-cost navigation systems for UAVs require feedback to constantly correct 

for errors in inertial sensors. Currently, unmanned aircraft may deal with a location 

determination failure (such as losing a GPS signal) by switching to an alternative 

location determination method. This includes ground based GPS or using radar systems 

such as laser radar to navigate. Communication failures may also occur, where the 

UAV is unable to contact home base. In this situation, the UAV may establish alternate 

forms of communication using alternative satellite or UHF based systems. The UAV 

may also switch to a holding pattern until communication is re-established or another 

course of action is determined. Returning to base or making an emergency landing at 

the nearest location is another option, provided the UAV is still able to navigate.  

 

  Recent advances to deal with in-flight failure include flying UAVs in formation 

such that if one UAV is compromised, then the rest of the formation can determine the 

best way to proceed and issue commands to the impaired UAV. This approach is 

known as the self-flying, self-planning, pack-hunting method. Currently, the U.S. is 

developing UAVs that implement pack-hunting and planning behaviors, which are 

expected to be operational by the year 2008. In addition, there are new onboard location 

determination systems such as the Shipboard Relative GPS. These systems are designed 

to provide an exact location within eight inches. This level of precision will enable 

automated aircraft to land on a carrier deck. Additionally, new UAVs will be designed 

to imitate swarming behavior to ensure that human/autopilot mix remains possible. The 

US military’s plan for UAV improvements in the near future include navigation, 
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control, and path planning enhancements that will allow machines to have cooperative 

situation awareness. Also, the addition of mission-oriented robotic path planning to 

UAV’s incorporates tactical information to deal with unforeseen circumstances. This 

includes the use of remote sensor information for the purpose of path planning, which is 

expected to improve mission survivability without the need for human intervention 

[16]. These newer techniques are expected to lower in-flight failure by providing 

redundancy, situational awareness, and robustness to deal with emergencies.   

 

     1.6 Contributions of Proposed Pilot  

 

  The proposed GA/SA derived pilot would add an additional layer of redundancy 

to an existing onboard pilot(s).  It learns flight control signals as a function of flight 

time for a previously determined flight path. It can take over control if the main pilot is 

unable to fly the aircraft due to failure(s) involving positioning or path data. The 

GA/SA derived pilot is designed to be independent of 3-D positioning information 

requiring only flight time as an input parameter. The GA/SA derived pilot can be an 

advantage in unexpected emergencies, and may limit the loss of UAVs in situations 

where positioning or path errors occur.  

 

  The proposed pilot can also act as an additional component of an error detecting 

system; this is achieved by comparing the output (control) signals of the main pilot to 

that of the proposed pilot during flight. A large discrepancy between the two pilots may 

indicate an anomaly in the system, and early error detection may make a difference 

between a recovered UAV and one that is lost. The latter is part of Failure 

Determination Identification (FDI), a significant part of UAV design [17].  

 

  Non-adaptive control systems manage failures by providing fault-tolerance 

without the need to reconfigure the control structure [17].  However, in adaptive 

systems; one goal of FDI is fault isolation, which may include restructuring to prevent 

fault propagation to healthy components [17]. The GA/SA derived pilot can be useful in 
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detecting a failure and can be used as a resource in restructuring the control hierarchy 

of a UAV. Restructuring control describes a topic outside the scope of this research; 

hence, the proposed GA/SA pilot will not carry out restructuring on its own. 

Nevertheless, it may be used as a component in such a system to backup the main pilot 

in both adaptive and none-adaptive UAV control systems.   

 

  Another advantage to the proposed pilot is that it enables mathematical 

modeling of the system. Since a formula is generated, it clearly relates the input 

parameter to the output signals and can be used to further analyze the system’s response 

as a function of time. As stated earlier, there are possible military applications where a 

form of open loop control may be useful in missile avoidance and defense 

countermeasures. One such proposal involves the use of an open loop missile evasion 

algorithm for fighters; the open loop control is recommended if the  location of aircraft 

or the missiles targeting the aircraft is unknown [18].  

 

 1.6.1 Operation Format of Proposed Pilot  
 
 

 The proposed pilot duplicates a closed loop system by learning SH control 

commands issued during closed loop system operation with respect to flight time. It is 

assumed that the closed loop system may use any pilot, human or computer controlled. 

Hence, the proposed pilot will operate in a pseudo open-loop format by generating 

flight control signals based on flight time alone; this allows it to run independent of 

path data and positioning information. 

 

1.7 Summary of Contributions  

 

The significant contributions of this dissertation are summarized as follows: 

 

 A technique for deriving a GA/SA based autopilot was developed. 
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 Proposed autopilot functions independently of positioning and path data when             

 flying a predetermined path using flight time as sole input.  

 

 A technique was developed to derive formulas from observed data. 

 

 A technique was developed to encode genetic strings that represent candidate  

formulas during the search; designed so that any combination, crossover, mutation 

or perturbation of the encoded solution will continually yield a valid new 

combination. 

 

 The generated formula(s) follow standard mathematical rules and are flexible in  

structure; hence, other investigators will be able to substitute alternate formulas or 

expand the complexity of the formulas in future work. 

 

 Genetic Algorithm and Simulated Annealing hybrid search was shown to produce   

 valid, usable results in deriving SH control equations. 

 

1.8 Dissertation Outline 

 

The dissertation is organized as follows:  

 

   Chapter 1 includes motivation, problem definition and summary of the contribution. 

 

   A Literature review of current UAV technology, soft computing methods including     

Fuzzy systems, Genetic Algorithms and Simulated Annealing are presented in              

Chapter 2.  

 

   Chapter 3 discusses the helicopter system. The chapter briefly discusses the origins 

of helicopter and helicopter flight principles. 
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   Chapter 4 presents the proposed autopilot. 

 

   Chapter 5 explores the technique of implementing a solution along with a discussion 

that defines the control signals, data collection and formatting. A brief overview of 

Genetic Search and Simulated Annealing along with crossover techniques and 

annealing schedules is presented. Later in the chapter, functions are discussed and 

the performance criterion is defined along with the fitness function. The solution 

form is presented with details on mathematical operators. Testing methodologies 

are also discussed along with test goals. 

 

 Chapter 6 presents the testing results with graphs showing signal mapping. The 

final graphs demonstrating flight paths are presented with additional graphs that 

compare the GA/SA algorithm to other algorithms, including PID and fuzzy logic 

controllers. The chapter wraps up with concluding remarks about the GA/SA 

controller and discusses future research goals. 
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CHAPTER 2 

 

LITERATURE  REVIEW 

 

 2.1 Literature Review 

 

 The following sections review UAV applications and research, PID controllers as 

well as search techniques. These were considered as possible methods to solve the 

problem of deriving a formula based pilot.  

 

2.2 Prevalence of UAV Applications  

 

 In 2002, there were an estimated 2400 UAVs in both military and civilian 

applications [22], and in Japan there were 1565 unmanned helicopters used for 

agriculture [22]. UAVs account for about $100 million annually in commercial sales 

alone [22]. The U.S. UAV spending reached $3 billion in the 1990s, and it is expected 

that this budget will be tripled in this decade [24].  Table 2.1 shows the regional market 

use for UAVs from 1997 to 2004 [25].  

 

Table 2.1: UAV Regional Market Breakdown for Period 1997 to 2004 (source: 
http://med.ee.nd.edu/MED9/Papers/Aerial_vehicles/med01-164.pdf) 

REGION  MARKET PERCENTAGE (%) 
Europe  25-30 
North America  35-40 
Pacific Rim  15-25 
Middle East  10 
Other  11-14 
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 According to a National Aeronautics and Space Administration (NASA) report, 

the U.S. Air Force, Army, Marine Corps, and Navy all possess and operate UAVs of 

some type, the latter used for reconnaissance, combat support, and other related 

applications [30]. Military UAV application is starting to mature and find genuine 

applications in mission planning and support roles. Civilian applications for UAVs 

include those used by NASA, the National Oceanic and Atmospheric Association 

(NOAA), and the Department of Homeland Security (DHS) [30].  Figure 2.1 illustrates a 

NASA diagram that demonstrates the current private and public sector organizations 

considering or currently using UAVs. Note that several UAV-related technologies 

developed for military use have similar or identical applications in civil UAVs [30].  

However, significant economic and philosophical differences exist between civil and 

military applications for UAVs. The DOD UAV has a specific combat role it is designed 

to fulfill. Thus, the vehicle design is combat-oriented with equipment such as armor 

shielding, sensor suites, and munitions that allow it to survive in a hostile environment. In 

a DOD application, the completion of the mission without harm to personnel takes 

precedence over cost considerations. Alternately, in civil applications such as NASA, the 

basic objective is to further develop the core technologies to reduce the economic cost 

while increasing flight safety.  
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Figure 2.1: Classification of UAV Users (source: http://www.nasa.gov/centers 

/dryden/pdf/111761main_UAV_Capabilities_Assessment.pdf) 
 

2.2.1 Examples of Civilian Applications of UAVs   

 

 The following sections will discuss operational UAVs currently used for 

commercial or research applications. Some of the UAVs are adapted from military 

versions while others were initially designed as civil UAVs. 

 

2.2.1.1 The Altair 

 

 The Altair is a UAV built by General Atomics Aeronautical Systems 

Incorporated, and demonstrates a high altitude version of the military Predator B UAV. 

The Altair is designed for increased reliability, as it features a fault-tolerant flight control 

system and advanced avionics. In the current configuration, it can carry up to 660 lbs. 

internally, and an additional 3000 lbs. on its wings. This UAV operates with a 52,000 
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foot ceiling and can fly without refueling for 30 hours. It is currently used by the NASA 

Dryden Flight Research Center [30]. Figure 2.2 shows an Altair in flight [30]. 

 

 
Figure 2.2: NASA Altair UAV (source: http://www.nasa.gov/centers/dryden/ 

pdf/111761main_UAV_Capabilities_Assessment.pdf) 
 

2.2.1.2 Altus I / Altus II 

 

 The Altus aircraft was developed by General Atomics Aeronautical Systems 

Incorporated, located in San Diego, CA; this UAV illustrates a civilian version of the 

U.S. Air Force Predator with a similar appearance. However, it features a slightly longer 

wingspan geared more towards carrying atmospheric sampling and other scientific 

research instruments. This version can carry 330 lbs. of sensors and other equipment in a 

nose-mounted compartment. The location is designed to allow for sampling of fresh air 
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unaffected by heat or pollutants from the engine. Altus II features a ceiling of 65,000 feet 

and can fly without refueling for about 24 hours. The difference between Altus I and II is 

that the former includes a single-stage turbocharger, and the latter a two-stage 

turbocharger. The Altus I is currently used in the Naval Postgraduate School while the 

Altus II is located at the NASA Dryden Flight Research Center. Figure 2.3 shows an 

Altus II flying over south California [30]. 

 

 
Figure 2.3: Altus II Flying over South California (source: 

http://www.nasa.gov/centers/dryden/ 
pdf/111761main_UAV_Capabilities_Assessment.pdf) 
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2.2.1.3 The Center for Interdisciplinary Remotely-Piloted Aircraft Studies 
(CIRPAS) 

 

 The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS), a 

research center located at the US Naval Postgraduate School, was established in 1996 by 

the Office of Naval Research. The scientific community benefits from the data that 

CIRPAS collects from atmospheric as well as ground-based meteorological, aerosol, and 

cloud particle sensors. The data are collected and compiled on location and then provided 

in various formats to several user groups. CIRPAS operates assorted manned aircraft as 

well as unmanned aerial vehicles that include the UV-18A ‘Twin Otter’, the Pelican, the 

Altus ST UAV, the Predator UAV, and the GNAT-750 UAV. The National 

Oceanographic Laboratory also uses CIRPAS as a national research facility. 

 

2.2.1.4 The Yamaha RMAX Unmanned Helicopter  

 

 The Yamaha RMAX helicopter was first introduced in 1983, and includes several 

applications including surveillance, crop dusting, and other agricultural uses. It can carry 

65 lbs. and fly for 90 minutes [30]. For example, it can film a volcanic eruption from a 

close range, an extremely risky undertaking for a manned aircraft. It also includes 

applications for film and can take aerial shots. The Yamaha RMAX helicopter remains 

one of the most advanced, commercially available, UAVs currently on the market [31].  

An outstanding feature of the RMAX includes its Yamaha-exclusive flight altitude 

control system, or YACS. This system allows RMAX to hover in a stationary position. 

The Yamaha YACS system’s design allows it to hover in place pending further 

instruction, without pilot input [31]. This added stability made it easier to train pilots to 

use the helicopter as well as lowered the loss rate. RMAX is also extremely refined with 

little vibration. Additionally, high sophistications afforded versatility that was previously 

impossible.   

 

 For example, if RMAX is ordered with a GPS system, it can be used to take 

extremely high definition photos from the same location over regular time intervals. This 



www.manaraa.com

 17 

feature allows farmers, for example, to accurately monitor and measure crop growth [31]. 

In the second quarter of 2003, Yamaha released an update to the RMAX, named the 

RMAX Type II G. The G implied that this UAV came with a Global Positioning System 

(GPS) standard. The RMAX base model featuring a single GPS module costs about 

$86,000. The Aerial Photography version can fly about 500 feet above the ground and 

costs about $150,000 for the base model, and as much as $230,000 when fully loaded 

[31]. Yamaha also offers a flight research model designed for universities that features a 

manual-only flight mode, and retails for about $120,000 [31]. Figure 2.4 illustrates the 

Yamaha RMAX helicopter. 

 

 
Figure 2.4: Yamaha RMAX Helicopter (source: http://www.yamaha-

motor.co.jp/global/news/2002/02/06/sky.html) 
 

2.3 Automated Helicopter Challenges  

 

 Helicopters are multiple input, multiple output (MIMO) nonlinear machines. As a 

platform, helicopters represent unstable and highly coupled systems [2]. This inherent 

instability makes controlling a helicopter a challenging task. Helicopters require constant 

adjustment, otherwise they may crash or run off course. Furthermore, adverse weather 
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conditions such as rain or snow pose significant challenges, leading to possible loss of 

aircraft. In addition, there are also communication challenges to overcome. VTOLs that 

fly long range missions rely mainly on GPS, if the GPS signal is lost then the aircraft will 

not know its location and the mission may be compromised.  

 

 Bandwidth factors must also be considered. For example, the Pentagon is still 

weighing how many UAVs it can deploy to army units, as these UAVs may strain the 

limits of the military’s satellite communications. Consequently, army officials may 

cancel two of the four planned UAV rollouts because of bandwidth concerns [26]. The 

UAVs are being developed under the Pentagon’s Future Combat Systems (FCS) program. 

The army has considered adding more advanced sensors and weapon capabilities with the 

ability to transfer high-speed, full-motion video. All these new features will significantly 

increase the necessary bandwidth. Thus, it could overload existing satellite capability 

because it will require 45 megabits per second for each plane [26]. For example, a 

Predator or Globalhawk UAV in its current iteration needs a full transponder on a 

satellite to transfer data [26]. A larger number of UAVs (1000 or more) would exceed the 

current available bandwidth. Even 100 planes can present a significant problem, as UAVs 

require Ku-band capacity which is unavailable or scarce in the Middle East. The U.S. 

military uses some commercial satellites to overcome the lack of bandwidth; however, 

this is not always the best option [26].  

 

 Currently, the U.S. military is working on a Transformational Communications 

Satellite (T-Sat) program expected to launch in 2013 [26]. Once completed, this network 

will provide laser crosslinks and IP-router technology to help solve the bandwidth needs 

[26]. However, the T-SAT program suffered setbacks from budget cuts: in 2006, $200 

million was cut; and for 2007, the Senate Armed Services Committee is considering 

cutting back an additional $70 million from the program [26]. There are also applications 

where UAVs are required to operate indoors, where GPS does not work well if at all. 

These missions usually involve indoor reconnaissance and rescue missions where the 

GPS signal remains quite weak. In such circumstances, developers of UAVs must 
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consider alternative location determination technologies to GPS [28]. The following 

technologies offer possible alternatives GPS:  

 

 Inertial Navigation Systems  

 Cellular phone networks (2G, 2.5G, 3G, and 4G)  

 802.11 based networks  

 Bluetooth 

 RFID - Radio-frequency identification  

 Ultrasound  

 UWB - Ultra-wideband  

 IrDA - Infrared Data Association  

 TV radio signals 

 

 
Figure 2.5: A Block Diagram of an Inertial Navigation System (http://www.imar-

navigation.de/download/inertial_navigation_introduction.pdf) 
 

 Inertial Navigation Systems (INS) use dead reckoning to calculate position; this is 

achieved with accelerometers, gyroscopes and compasses. However, the likelihood of 

error increases with time. As such, INS tend to use GPS (when available) to synchronize 
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its position. Figure 2.5 shows a block diagram of a typical INS system. In the absence of 

GPS alternative technologies are used to locate position. Hence, a pseudo open loop 

navigation system such as the one proposed in this paper would present a viable backup 

system in situations where GPS or location data is not available. Search of current 

literature found no specific examples that used equations to control a small unmanned 

helicopter in pseudo open loop mode. Cellular phone networks can determine 

geographical positioning using some form of radiolocation that uses cellular base stations 

[34]. The most common method involves triangulation, using radio towers [34]. The 

location can be determined using one of several methods: 

 

 Angle of Arrival (AOA): Requires at least two towers and locates a position using the 

point where the lines from each tower intersect. 

 Time Difference of Arrival (TDOA): Similar to GPS as it uses multilateration (also 

known as hyperbolic positioning) and time difference in signal arrival to determine 

location. This system requires at least three towers to determine location.   

 Location Signature: Uses "fingerprinting" to store and then recall patterns in signals. 

One example is multipath signature, which refers to radio signal propagation 

phenomenon resulting in signals following multiple paths to reach a receiving antenna. 

This results from atmospheric reflection or from bouncing off a terrestrial object such as 

a building or a mountain. [34]. 

 

 The AOA and TDOA systems depend on a line of sight, which can be a challenge 

in mountainous terrain or around extremely large objects such as skyscrapers. The 

alternative is location signature, which tends to work more effectively in large cities or 

mountainous regions [33, 34]. In 2005, a startup company called Skyhook Wireless 

launched a Wi-Fi based positioning system as an alternative to GPS technology [32]. The 

WPS is a client software package that includes a reference database of about 1.5 million 

private and public Wi-Fi access points. The database is constantly updated with the 

locations of current and new Wi-Fi access points. Skyhook claims their technology has an 

accuracy of 70 to 140 feet. This system will be available in the 25 most populated cities 
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in the US [32].  The advantages of cellular location determination are that assets already 

exist. However, the disadvantages include the multi-path effect. Also, the TDOA 

localization method requires clock synchronization while the AOA method needs an 

antenna array. The system is inaccurate indoors and can be costly to maintain [36]. 

 

 In Bluetooth based positioning technology, one way of determining location is 

through the use of a central server. In this situation, a mobile user first connects to a 

server, the server then uses the onboard Bluetooth interface to determine the closest 

Bluetooth provider. Subsequently, it retrieves the current location from the provider [35]. 

This model assumes that Bluetooth technology will become ubiquitous enough that a 

home or office environment would provide enough devices that can act as location 

providers [35]. Since Bluetooth transmitters have alternate power classes, the system will 

have different ranges of operation. The lowest power class will yield a communication 

range of about 35 feet [35]. This is enough to provide location information at room level 

granularity [35]. Figure 2.6 shows an example of a Bluetooth based location 

determination system [35]. 
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Figure 2.6: An Example of a Bluetooth Based Location Determination System (source: 

http://www.telin.nl/index.cfm?language=en&context=660&id=659) 
 

 An RFID system utilizes RFID tags to help determine location. For example, 

AXCESS’ patented ActiveTag system uses low cost battery powered tags that transmit a 

wireless message with a range of 30 to 100 feet [36]. These messages are received by 

hidden receivers no larger than a human palm [36]. The receivers are connected using a 

standard network to enterprise system software. The system provides real time location 

displays as well as automatic inventory counts [36]. This is an example of a location 

determination system that can track inventory. 

 

 Ultrasound is also used for locating an object. One such system, the Bat (by 

AT&T) uses the principle of tri-lateration, which refers to finding a position by 

measuring distances [37]. The system works by a controller sending an RF request to the 

object, then a transmitter or Bat responds by sending a short pulse of ultrasound. The 

ceiling-mounted receivers determine the pulse’s flight time to an accuracy of about three 

inches [35]. The advantages of this system include accuracy that makes it suitable for 
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indoors applications. The disadvantages include a large fixed-sensor infrastructure that 

must be built into the ceiling. In addition, the system is very sensitive to the placement of 

sensors and is not easy to deploy. The system can also be costly to install and does not 

scale well [35]. 

 

 There are also magnetic tracking based position determination systems such as the 

Tracking Motion Star [35]. This system generates a magnetic pulse along an axial DC 

field. The position of an object is computed by measuring the response in three 

orthogonal axes [35]. The measurements are combined with those of the earth’s fixed 

magnetic field. The system has an accuracy of 1 mm, illustrating its main advantage of 

high accuracy. Disadvantages include large implementation costs, the need to tether the 

object to a control unit as well as the requirement for sensors to remain within three to 12 

feet of the transmitter. In addition, the system is adversely affected by the presence of 

metallic objects, which can cause shifts in accuracy [35]. 

 

 Other location determination systems are infrared (IR) based. The IR Data 

Association’s Active Badge (AT&T) works by using a badge located on an object [35]. 

The badge emits an IR signal unique to that object. Locally based IR receivers identify 

the signal and relay it to processing software that determines location. However, the IR 

signal can be blocked by walls and other objects. The system is able to locate an object 

with room-level granularity. IR based systems do not scale well due to the limited IR 

signal range [35]. High costs are also associated with the installation and maintenance of 

these systems. In addition, sunlight and fluorescent light can interfere with the IR signals. 

 

 TV and radio signals can also be used to determine location. A typical system 

assumes that a mobile receiver unit is in an area of at least three fixed commercial 

television stations. The system also assumes that each television station is broadcasting 

standard television signals. The TV broadcasts must include the vertical chrominance 

burst as well as the horizontal synchronizing signals. The standard television signals are 

received and processed by the mobile receiver. Next, the arrival times of the 
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synchronizing signals are measured and compared to a fixed reference station that 

receives TV broadcasts and produces reference signals. A processor then computes the 

location of the mobile receiver unit, using the mobile receiver unit and the reference 

receiver signals respectively [39, 40]. 

 

2.4 PID Controllers  

 

 Proportional, Integral, Derivative (PID) controllers are a generic control-loop 

feedback mechanism that has a wide application in industrial control systems. A PID 

controller compares two variables: one is a measured process variable and the other a 

desired set-point. The PID controller then measures the error between these two variables 

and responds with a corrective action that attempts to match the process variable with the 

desired variable [26].  The controller is designed to eliminate the need for constant 

operator interaction and to achieve automotive control of the plant. PID controllers have 

applications in cruise control systems for cars, industrial control, and several other 

applications where a need exists to constantly adjust input to maintain an optimal/desired 

point [26].  The goal of a PID controller is to hold the process variable at the desired 

value (set-point). Figure 2.7 shows a diagram of a PID controller [26].  
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Figure 2.7: A block diagram of a PID controller (source: 

http://upload.wikimedia.org/wikipedia/commons/4/40/Pid-feedback-nct-int-
correct.png) 

 

 PID controllers calculate the error between the output and set-point and respond 

to minimize that error. Additionally, changes in the set-point also lead to a change in the 

PID controller response. 

 

PID controllers have three modes: 

1. The P or Proportional Band controller: this output is proportional to the measured 

error.   

2. I or Integral controller output: this output is proportional to the time the error has 

been present.   

3. D or Derivative controller: this output is proportional to the how fast (rate) the change 

of error occurs with respect to time.  

4. “Tuning” the PID controller involves choosing the correct values for P, I, and D.  
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2.4.1 Drawbacks of PID Controllers  

 

PID controllers are prone to “hunting,” meaning they oscillate while seeking the 

right output to minimize error.  In addition, if gains of proportional, integral and 

derivative are not optimally set; then the controlled process input can become unstable 

and oscillate. Since PID controllers are linear, their performance in non-linear systems 

may or may not be optimal. To make PID controllers perform effectively they should be 

enhanced through methods such as gain scheduling or fuzzy logic. Also, the differential 

term can be susceptible to small amounts of measurement (process noise), resulting in 

large errors or instability. In some applications, the differential band is turned off with 

almost no loss of control; the latter is equivalent to using the PID controller as a PI 

controller. 

 

2.5 Selecting a Search Tool 

 

 In this dissertation, a search strategy is needed to construct the formulas that will 

control the SH. This strategy is needed in order to combine the mathematical building-

blocks into a formula that is able to duplicate the control signals to the helicopter. The 

following methodologies were considered:  

 

2.5.1 Classical Programming 

 

 Classical programming techniques were evaluated and found to be inefficient and 

unable to derive a set of equations from observed data in this application. This is because 

no assumptions should be made as to the shape of the sample data. If assumptions are 

made then the algorithm could be limited to considering solutions programmed ahead of 

time. Furthermore, constructs would have to be rather complex to search the domain. 
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2.5.2 Decision Trees 

 

 Decision trees were considered because of their relative speed (faster than version 

spaces) for a large concept space and where disjunction is easier to carry out. However, 

they were ruled out since they were not considered flexible enough to produce the 

function formats required. They are too complex to adapt for use in building formulas 

that must fit a set of data. Also, a decision tree may not always explain its classification 

clearly. 

 

2.5.3 Statistical Regression Analysis 

 

Statistical (regression based approaches) were found to be ineffective when the final form 

of the function is not known or if there is limited flexibility as to the mathematical 

components or primitives that can be used. The algorithm of choice must also be robust 

so that it does not get stuck in local maxima, and it must also be resilient to noise and 

discontinuous data. The algorithm must also be flexible enough to search for values for a 

pre-selected mathematical building block. There are, of course, statistical based methods 

available that can search for patterns in data. Mainly, regression analysis (RA), which can 

be used to analyze both linear and nonlinear data, but RA has its limitations since there 

are some problem classes that do not lend themselves well to this type of approach. These 

include problems in which there is little or no information about the function that 

generated data. In these cases, researchers typically use neural networks to learn more 

about the domain space of the function and then use this information to apply regression 

techniques. Hence, regression analysis would not be very useful since the domain space 

is not well defined and little is known about what the generated function should look like. 

 

2.5.4 Soft Computing Methods 

 

 Soft computing methods have no universally accepted definition; however, they 

can be summarized as a non-traditional computation approach, where traditional 
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approaches are known as hard computing methods. Soft computing methods attempt to 

emulate the techniques and approaches used by humans and animals to solve problems. 

Soft computing techniques essentially copy biological learning or problem solving 

behaviors. These techniques include: 

 

 Artificial Neural Networks  

 Fuzzy Systems  

 Genetic Algorithms and Evolution-based Strategies  

 Simulated Annealing 

 

 Note that these approaches are not independent, but rather strongly related. They 

have a similar solution-strategy approach whose goal is to resolve complex problems that 

cannot be solved efficiently using traditional, hard computing, methods.  Often, one or 

more methods are combined to produce hybrid approaches that may offer advantages to 

solving more difficult problems. The hybrid approach is usually utilized to minimize a 

bias or shortfall inherent in either of the combined methods. Nuero-Fuzzy approaches are 

but one example of a hybrid approach that offers advantages to using Neural Networks or 

Fuzzy Systems on their own. 

 

2.5.5 Artificial Neural Networks 

 

 Artificial Neural Networks (ANNs) represents are a data driven approach that is 

essentially an information processing system. ANNs attempt to duplicate the behavior of 

the human brain by emulating biological neurons [27].  The artificial neurons are able to 

reason like a human at some level and are able to learn from data directly. They learn by 

example, so they do not need to know much about the system they are trying to duplicate. 

This makes them quite useful for applications where the process that generated the data 

need not be understood. Artificial Neural Networks usually include a series of neurons 

connected together. Each neuron is connected to another by weights that are adjusted. 

The learning process occurs when the weights on the neurons are adjusted so that the 



www.manaraa.com

 29 

network can fit a series of inputs to a known output series. Small adjustments based on 

gradient descent are made to the weight of a neuron. This is based on the difference 

between the current output and the desired output; a neuron is said to be ‘learning’ when 

the weight associated with one of its inputs is updated.  Once training is complete, 

verification is fast, and as the connecting weights have no relation to the physical 

characteristics of the environment, it is considered a black-box model (Fig 2.8).  

 

 The quality of data directly affects the performance of an ANN; which depends 

upon the source, range, quantity and quality of data used in training. It is also crucial that 

the training data set is similar in features to the test data for ANN to perform well.  If the 

training and test data have dissimilar features, the performance may vary. The latter is 

true of almost all soft computing methods that ‘learn’ from their environment. The main 

drawback to using a neural network to generate SH control equations is due to the 

difficulty in deriving mathematical equations that represent the knowledge learned by 

network. This is because neural networks do not provide a practical way to extract 

knowledge encoded in its weights and neurons. A mathematical formula cannot be easily 

derived with mathematical building blocks of the programmer’s choosing. Another 

difficulty lies in determining exactly what features of the data the neural network has 

encoded; hence, it can limit further analysis.    

 
Figure 2.8: An Example of an Artificial Neuron where Weighted Inputs are Fed in and 

an Output is Provided in Response. During Training the Weights on the Inputs are 
Adjusted Until the Neuron Performs Satisfactorily. (source: 
http://www.seattlerobotics.org/encoder/nov98/neural.html) 
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2.5.6 Fuzzy Systems (Fuzzy Logic & Neuro-Fuzzy Systems) 

 

 Fuzzy Logic was developed in 1965 when it was introduced by Dr. Lotfi Zadeh in 

a paper in which he described the mathematics of Fuzzy Set theory. Dr. Zadeh formalized 

the theory of Fuzzy Logic in 1973.  Since that time, Fuzzy Logic has been used in a wide 

range of applications, specifically those in industrial systems control. Fuzzy Logic 

systems are essentially structured numerical estimators. This approach extends Boolean 

logic to handle the concept of partial truth; the latter means that the truth takes a value not 

completely true and not completely false, but rather a value in between. To implement 

fuzzy logic, the idea of Fuzzy Sets is developed; a collection of objects that may belong 

partially to the set or belong to a degree. These take values between 0 and 1 rather than 

absolute one or zero. Figure 2.9 illustrates the concept of degree of membership. 

 

Disadvantages of fuzzy logic controllers include the following: 

 Requires a lot of data 

 Fuzzy logic (sometimes) provides a crude sizing 

 Not useful for new program types 

 Not useful for programs much larger or smaller than the historical data 

 

   Fuzzy logic is a great tool to deal with problems of uncertainties and imprecise 

information. Data uncertainty can be due to randomness or lack of precision. Imprecision 

is usually due to lack of sharp boundaries in the information, whereas randomness has to 

do more with the nature of the event.  Fuzzy logic can be used to construct formulas; 

however, it proved to be less attractive than GAs and SAs which lend themselves more 

easily to formula generation.   
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2.5.7 Neuro Fuzzy Systems 

 

 The Neuro-Fuzzy approach is a hybrid one for it uses the components of a 

conventional fuzzy logic system, but the computations at each stage are performed by a 

hidden layer of neurons. The neural network’s learning capacity is used here to enhance 

the system knowledge. There exist various architectures of Neuro Fuzzy systems. The 

hybrid combination includes the benefits of a combined ANN and a Fuzzy Logic system. 

The resulting system also eliminates some disadvantages associated with Fuzzy Logic 

and Neural Networks by using their common features as a way to enhance them. The 

common features are distributed representation of knowledge, a model-free estimation, 

and the ability to handle data with uncertainty and imprecision. Respectively, Fuzzy 

Logic is tolerant of imprecise data while Neural Networks have a good tolerance for 

noise in the data. 

 

 A neural network’s learning capability is used to automatically generate 

additional fuzzy rules and membership functions. This combination reduces the time and 

cost in design and implementation of a solution. The fuzzy logic approach contributes to 

this combination, enhancing the generalization capability of the neural network. It 

achieves this by providing a more reliable output reading when encountering data beyond 

the limits of the training data. This method is a viable method and could have been used 

in this study. However, it was ruled out because it is not straight forward to generate 

mathematical formulas from the resulting solution.    
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Figure 2.9: Fuzzy Logic Degree of Membership, Illustrates the Features of the 
Triangular Membership Function Which is Used in this Example because of its 

Mathematical Simplicity. Other Shapes can be used but the Triangular Shape Lends 
itself to this Illustration. (source: http://www.seattlerobotics.org/encoder/ 

mar98/fuz/fl_part4.html#INTRODUCTION) 

 

2.5.8 Genetic Algorithms (GAs) 

 

 A genetic algorithm (GA) is a search technique used in computing that can find 

exact or approximate solutions to search and optimize problems. Genetic algorithms 

belong to the category of global search heuristics, and are considered a sub-class of 

evolutionary algorithms, or evolutionary computation. The latter is a class of techniques 

inspired by evolutionary biology. Hence, biological terms such as inheritance, mutation, 

crossover, and selection have been adapted in evolutionary computing. Genetic 

Algorithms are iterative in nature, so a population or collection of solutions is first 

randomly generated and then tested to evaluate their goodness or fitness. Finally, the 
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fittest solutions are selected and ‘bred’ to create the next generation. Mutation, which 

refers to random changes in genetic code, may also be used to cover more of the search 

space. The previous processes yield a new generation, and the process is repeated. Figure 

2.10 shows a general lifecycle of genetic search techniques. The advantages of GAs 

include the ability to avoid getting stuck in local maxima. This is because GA’s search in 

parallel from several varied solutions and are not hindered by discontinuities in solutions 

expressed by mathematical formulas. This is because they directly manipulate a string 

representing those formulas [41, 42].  This is especially useful when searching large, 

complex domains, the type encountered when searching for unknown functions.  

 

 
Figure 2.10: Illustrates the Steps Involved in Creating a New Generation. The Steps 
are Repeated a Finite Number of Times Till a Solution is Found or the Maximum 

Number of Generations has been Reached. 
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2.5.9 Simulated Annealing (SA) 

 

 Simulated annealing (SA) is a generic probabilistic meta-algorithm designed to 

solve the global optimization problem by finding a close approximation to the global 

optimum of some function in a large search space. This algorithm was invented by S. 

Kirkpatrick, C. D. Gelatt, and M. P. Vecchi in 1983; and independently, by V. Cerny in 

1985. The name ‘Simulated Annealing’ refers to the inspiration for this algorithm, the 

annealing method in metallurgy. The latter represents an approach that involves heating 

and then cooling a metal in a controlled way for the purpose of achieving larger, less 

defective crystals within the material. The heat frees the atoms from their initial 

positions, a local minimum of the internal energy of the metal. Once heated, the atoms 

wander at random through higher energy states. Next, the slow rate of cooling allows the 

atoms a better chance of finding configurations with lower internal energy than the initial 

one.   

 

2.6 Selecting a Search Strategy 

 

 The method selected to solve this problem is a soft-computation method that uses 

Genetic Algorithms and Simulated Annealing to search in parallel. This is a hybrid model 

that searches for an optimal solution within a time constraint. The search strategy will be 

referred to as GA/SA search. 

 

2.6.1 Why Use and Combine GA/SA 

 

Genetic and Simulated Annealing search techniques were selected because GA/SA search 

is not mathematically based. Hence, no direct calculations on the data would be 

performed. Therefore, data discontinuities, noise and data inconsistencies would not 

impact the search strategy. Second, GA/SA algorithms search for a solution independent 

of what the data looks like. This means that any search bias is reduced in relation to 

patterns present in the data, and the algorithm is free to seek any pattern hidden within 
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the data. Also, due to the random nature of GA/SA search, the results will vary from 

simulation to simulation. This increases the possibility of finding a better result. In 

addition, GA/SA search is resistant to getting stuck in local maxima [43], an important 

consideration when searching for patterns within a data set. Due to these advantages, 

GA/SA search is a good fit for deriving flight control functions from data, provided a 

mathematical building block is chosen correctly. 

 

 Although Genetic Algorithms and Simulated Annealing search share traits in their 

approach, a hybrid approach that uses both in parallel to search independently of each 

other was chosen for specific reasons. It was assumed that if there were any bias built 

into the data, having two searches in parallel would increase the chances of finding a 

solution. The ‘solution population’ is managed differently in each method. A GA will 

keep a whole group of solutions around (a population) while an SA will keep only one 

solution, which will be continually perturbed.  

 

 The GA/SA hybrid approach presented in this dissertation searches for an optimal 

solution in parallel and then waits for both searches to finish. The GA and SA search 

threads are independent. This means that the search parameters will be chosen so each 

algorithm receives approximately the same search time. The best performing result is 

chosen at the end of the simulation.  

 

2.6.2 Similarities Between Genetic Algorithms and Simulated Annealing 

 

 Genetic Algorithms and Simulated Annealing have similarities. First, they both 

search in a finite number of cycles and ‘home in’ on a solution. Also, GA cycles are 

based on the number of iterations or generations, and SA cycles are measured by a 

temperature variable. The ‘working set’ of both strategies is somewhat similar as well. In 

a GA, a population of solutions remains and is ‘bred’ at each generation by combining 

bits and pieces from the current generation to produce the next. However, an SA includes 

a single solution perturbed multiple times during each temperature stage. This results in a 
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pseudo-population comprised of individual solutions, all derivatives of one solution. 

However, in SA, only one solution can survive to the next stage. This is in contrast to GA 

which uses a selected subset of the current population to ‘breed’ solutions to for the next 

generation.  

 

 Generally speaking, a GA always seeks the next lower energy state (less error) 

while a SA-based search may sometimes accept a higher error state to make the search 

less localized. This strategy is used to avoid local maxima in the search space. SAs 

maintain one solution and must to find a way to avoid localizing the search too much. 

Conversely,  a GA can achieve a broader search by keeping less desirable ‘individuals’ in 

the current population. These ‘individuals’ may contain genes that will be useful later. 

Simulated Annealing guarantees an optimal solution if the temperature is annealed 

infinitely slowly, similar to how a GA will find an optimal solution if it is allowed an 

infinite number of generations.  
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CHAPTER 3 

 
THE HELICOPTER SYSTEM 

 
3.1 Helicopter Classification 
 
 Helicopters are a class of aircraft that generate lift and propulsion using one or 

more horizontal rotors [56]. Each rotor may have two or more rotor blades. Helicopters 

are categorized as rotary-wing aircraft because they generate lift from the rotor blades 

spinning around a mast. The term “helicopter” is derived from the French word 

hélicoptère [56]. The origins for the French word hélicoptère may be traced back to the 

two Greek words: ‘heliko’ (meaning spiral) and ‘pteron’ (meaning wing) [92]. Since lift 

can be generated without the need to move the aircraft forward, the main advantage of 

helicopters lies in their ability to take off and land vertically. As a result, helicopters are 

used in isolated, congested, or remote areas that are not accessible to fixed wing planes. 

Helicopters are also capable of hovering in one location for prolonged periods and with 

more efficiency than alternative vertical take-off and landing (VTOL) methods [56].  

 

3.2 Brief Helicopter History 
 

 One of the earliest helicopter models was flown in 1901 by Ján Bahýľ (Slovak 

inventor) who developed a helicopter that used an internal combustion engine as a power 

source and managed to reach height of about three feet. In a later attempt on May 5, 

1905, Bahýľ’s helicopter reached a height of 14 feet and flew for about 5300 feet [56]. In 

1906, the French brothers Jacques and Louis Breguet experimented with airfoils leading 

to the development of  a plane they called “Gyroplane No.1” which managed to carry one 

man about two feet in the air for about a minute. This was considered the first manned 

helicopter flight. However, since the plane was extremely unstable and required two men 

on the ground to hold it at either end it, the flight was considered a tethered flight [56]. At 
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about the same time, the French inventor Paul Cornu developed a helicopter that featured 

two 20 foot counter-rotating rotors powered by a 24 hp engine. This plane was able to 

achieve a height of one foot and stay aloft for 20 seconds without the need for tethering 

to keep it stable; thus, this is regarded as the true piloted free flight. However, instability 

issues caused Cornu to abandon the project. Figure 3.1 shows Paul Cornu's helicopter 

[56]. 

 

 

 
Figure 3.1: Paul Cornu's Helicopter (1907) (source: 

http://en.wikipedia.org/wiki/Helicopter) 
 

 The Gyroplane Laboratoire, shown in figure 3.2,  is probably one of the earliest 

practical applications of helicopter design. The plane was build by the french designer 

Louis Breguet. The design featured an open steel tube framework that housed the engine 

and the fuel tank. It was powered by a 240 HP radial engine that turned two coaxial rotors 

[56].  
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Figure 3.2 Gyroplane-Laboratoire, 1933,  (source: 

http://en.wikipedia.org/wiki/Gyroplane_Laboratoire) 
 

 In 1936, Germany designed what is considered to be the first useful helicopter. 

The German Focke-Wulf Fw 61 broke many helicopter world records at the time it was 

introduced in 1937. Its design was like that of a fixed-wing aircraft that included a tail; a 

front propeller was added to provide forward thrust. The main rotors were located where 

the wings would normally go on a fixed-wing airplane. Two counter-rotating rotors were 

mounted on long sideway struts. Figure 3.3 shows an example of the Fw 61 plane [57].  
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Figure 3.3: An Example of the Focke-Wulf_Fw_61 (1937) (source: 

http://en.wikipedia.org/wiki/Helicopter) 
 

 The Germans also designed the Flettner Fl 282 Kolibri synchropter with a modern 

looking hull design but with no tail rotor. The helicopter featured two counter-

rotating/intermeshing rotors located on the cabin top and situated close together. Each 

rotor tilted outwards to avoid hitting the other rotor's shaft. These models were used in 

WWII and saw action in the Mediterranean Sea. Figure 3.4 shows an example of the F1 

282 helicopter [58]. The first German helicopter to reach production is the Focke-

Achgelis Fa 223 Drache [56]. The name “Drache” means "Dragon", about 20 palnes were 

made during WWII. The Fa 223 used radial engines that developed 1,000 horsepower. 

Figure 3.5 shows an example of the Focke-Achgelis Fa 223 Drache. 
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 Figure 3.4: An Example of the Flettner Fl 282 Kolibri (source: 

http://en.wikipedia.org/wiki/Helicopter) 
 

 

 
Figure 3.5:A Focke Achgelis Helicopter (source: 

http://en.wikipedia.org/wiki/Focke_Achgelis_Fa_223) 
 

 Igor Sikorsky was an American helicopter builder of Russian ancestry. The first 

helicopter he built was the Vought-Sikorsky 300; it flew in 1939 tethered and then flew 

un-tethered the following year.  Figure 3.6 Shows a VS-300; the design featured one 
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main rotor and a tail rotor [59]. Sikorsky is credited with building the first full-scale 

production helicopter in 1942, with a total of 400 copies made. The unique thing about 

the Sikorsky R-4 helicopter was the addition of the anti-torque tail rotor to the design; 

this configuration would become the most common helicopter design worldwide. The R-

4 entered service with the United States Army and was used in Burma for rescue 

missions in WW II. The British Royal Air Force became the first British military unit to 

be equipped with helicopters which lead to the formation of the Helicopter Training 

School in January 1945. The school was located at RAF Andover, and nine Sikorsky R-

4B Hoverfly I helicopters were used to train British pilots [59]. Figure 3.7 shows a 

Sikorsky R-4 helicopter [60]. 

 

 
Figure 3.6 A VS-300 Piloted by Igor Sikorsky Towards the End of 1941 (source: 

http://en.wikipedia.org/wiki/Helicopter) 
 

 In March 1946, the Bell 47 designed by Arthur Young became the first helicopter 

to be licensed for certified civilian use in the US. In 1967, the Bell 206 became the most 

successful commercial helicopter ever built, with more flight hours and more industry 

records than any other aircraft in the world. Figure 3.8 shows a Bell 47 helicopter. 
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Figure 3.7: Sikorsky R-4 Helicopter (source: http://en.wikipedia.org/wiki/Helicopter) 

 

 
Figure 3.8: Bell 47 Helicopter (source: http://en.wikipedia.org/wiki/Bell_47) 
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 The development of turbo-shaft engines after WWII allowed designers to build 

larger and faster helicopters. One of the early helicopters with turbo-shaft engines was the 

Kaman K-225 synchropter which was introduced in 1951 [56]. Turbo-shaft power plants 

are the usual power source used in most helicopters with the exception of small or 

inexpensive helicopters. 

 

3.3 Examples of Early Unmanned Helicopters 

 

 Enrico Forlanini is credited with building the first unmanned helicopter back in 

1877; his design did not have active stabilization or steering [56]. The technology was in its 

infancy in the first half of the 20th century; however, technological advances made after 

WWII made it feasible to build and control unmanned helicopters. One of the earliest 

companies is Gyrodyne of America who produced various unmanned helicopter models 

including the models for the U.S. Navy DASH program [82]. The program started in the 

1950’s when the U.S. Navy was looking for a way to control the Russian submarine threat. 

At the time, submarine torpedoes had limited range and complex control systems in 

addition to expense.  Gyrodyne had viable coaxial helicopter designs that can be used by 

the Navy as a cost effective method to deliver conventional and nuclear anti-submarine 

weapons [82]. The helicopters would be stationed on regular Navy ships and carriers. 

Figure 3.9 shows an example of a Gyrodyne coaxial unmanned helicopter.  

 

 The Kaman Aircraft Company was founded in 1945. The company specialized in 

the design and manufacturer of manned helicopters including the HTK-1 (1954) which was 

a piloted helicopter. Kaman also manufactured the world’s first electrical drone (this term 

was used for early UAVs because they were very basic) in 1953. The Kaman QH-43 

unmanned helicopter was the first helicopter in the world to be controlled by remote 

control (1957). Figure 3.10 shows an example of a Kaman HTK-1 drone (QH-43). 
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Figure 3.9: Gyrodyne Helicopter (source: http://www.gyrodynehelicopters.com) 

 

 
 

Figure 3.10: A Drone Version of the HTK-1 (source: 
http://www.gyrodynehelicopters.com/mitscher_class.htm) 
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3.4 Examples of Most Recent Unmanned Helicopters  

 

3.4.1 Yamaha RMAX  

 

 The Yamaha RMAX ranges in price with base models starting at $86,000 and can 

go as high as $1,000,000 for a fully loaded aircraft [84]. The Yamaha has wide applications 

from agriculture to aerial photography to surveillance. It features single or multiple GPS 

systems onboard as well as cameras. It can fly in manual or fully automatic modes. 

Depending on packaging and options, a fully automated RMAX carries four cameras and 

sends back pictures in real time while it flies along a predetermined flight path. If the 

operator observes something that they want a closer look at, they are able to override the 

pre-programmed flight path and fly manually. Once the observation task is done, the 

RMAX can continue following the original flight path. 

 

3.4.2 TAG Helicopters  

 

 The Tactical Aerospace Group (TAG) manufactures different models such as the 

TAG-M65, TAG-M80 and TAG-M100. The company makes four product lines from a 

military model that is designed to be rugged and operate in hostile environments to a 

civilian version that is designed for commercial applications [85]. The company also makes 

target drones for military application as well as a low-cost trainer model. The none-drone 

models can be built with digital and video cameras as well as a film camera. The 

helicopters also come with sensors, instrumentation, IR, and thermal cameras. 

These small VTOLs have applications such as surveillance pipeline inspection, power line 

inspection, and can serve as an ad-hoc communication relay. Figure 3.11 shows an example 

of a TAG helicopter.  
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Figure 3.11: An Example of a TAG Helicopter. Note the guns mounted below (source: 

http://www.tacticalaerospacegroup.com) 
 

3.4.3 The Autocopter 

 

 The AutoCopter is a self-stabilizing helicopter that uses neural-networks for 

control. The proprietary neural-network used is able to learn; as a result, the system can 

compensate for wind and weight variation as well as other factors. As a result, the 

AutoCopter is stable in hover and in flight. Figure 3.12 shows some AeroCopter Models. 

 

 
Figure 3.12: AeroCopter Models (source: http://www.neural-robotics.com) 
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 The neural-network controlled AutoCopter is easy to fly (little training is needed); 

this is because the system will not allow the pilot to enter commands that will make the 

helicopter unstable or cause it to crash [ 86]. There is a semi-autonomous flight mode that 

allows the operator to control the VTOL. In addition, there is a fully autonomous flight 

mode that uses a GPS system to navigate. All the operator has to do is to upload set-points 

(flight plan) using a laptop computer. Once the flight plan is loaded, the AutoCopter is able 

to execute the flight plan. At any time during the flight, the ground-based pilot can over-

ride the autonomous mode. Should the helicopter lose contact with ground control, it will 

turn back until it is within radio range, and if it runs out of fuel, it will deploy a parachute 

automatically [87].  

  

 Options include video and IR sensors as well as still cameras and spectrometers. 

The helicopter comes with a laptop PC, a GPS receiver, a heading gyro, and other 

accessories [87]. There are also arms packages that consist of a 12-gauge Auto Assault-12 

Full-Auto Shotgun as shown in figure 3.13. The design is “smooth and robust” in flight 

allowing the AutoCopter enough stability to be used in aerial photography. The AutoCopter 

is made by Neural Robotics Incorporated (NRI) and retails just shy of $100,000.  

 

  
 

Figure 3.13: AutoCopter Optional Arms Package (source: 
http://www.defensereview.cm/article846.html) 
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3.4.4 TGR Helicorp Alpine Wasp 

 

 The Alpine Wasp will be a derivative of TGR’s SNARK 2, which is a military 

UAV [89] that carries high-resolution IR Cameras mounted in a way that allows a 360 

degree coverage. It can also take off and land automatically, and it’s satellite controlled. 

The fuselage is of a carbon fiber and Kevlar construction that allows it to be strong and 

stealthy. The military version is armed and has two sub versions: the Land based Snark and 

Sea Snark for Naval applications. Many of the helicopter specifications such as speed, 

endurance, and armament are classified. It does feature a diesel engine that allows to it be 

very efficient. The civilian rescue version is intended to operate on Mt. Everest as a 

medical emergency service based in Nepal. The Wasp will be capable of being operated 

autonomously and can reach heights of 30,000 feet which is impressive for helicopters 

because they normally operate at a maximum ceiling of about 14,000 feet [89].  Mt.Everest 

is 29,055 feet high, so the Wasp is well suited to operate at these altitudes. Figure 3.14 

shows the Alpine Wasp. 

 

 
Figure 3.14: The Alpine Wasp (source: 

http://robotgossip.blogspot.com/2007/02/unmanned-helicopter-for-everest.html) 
 



www.manaraa.com

 50 

3.4.5 Science Applications International Corporation (SAIC) UAV Helicopter 

 

 The Vigilante VTOL is made by SAIC which markets a range of small and 

inexpensive unmanned helicopters. The Vigilante 502 model is an unmanned helicopter 

that is able to achieve a maximum speed of 117 mph. The Vigilante UAV features air and 

ground support. This VTOL and many of its variants weigh about 1,100 lbs. and are 26 feet 

long [90]. The main rotor has a diameter of 23 feet and a height of 8 feet at the rotor. It can 

also reach altitudes around 12,000 feet and has a payload capacity of about 150 lbs. It has a 

good range since it features a 36-gallon fuel tank. The helicopter control system allows for 

an autonomous flight. This helicopter is currently in use by the U.S. Army and Navy. 

Figure 3.15 shows an example of a Vigilante.  

 

 
Figure 3.15: A Vigilante Helicopter (source: 

http://www.saic.com/products/aviation/vigilante/vig.html) 
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3.4.6 Lockheed Martin's Manned/Unmanned K-MAX Helicopter 

 

 The unmanned K-Max helicopter was constructed as a result of collaboration 

between Lockheed Martian and Kaman helicopter [91]. Although it is somewhat slower 

than the competing Northrop Grumman's Fire Scout, its lifting capability is far superior as 

it is able to lift 6,000 lbs and can reach a maximum altitude of 29,000 feet. The piloted 

version (K-Max) is a large, single-seat helicopter employing a dual-meshed main rotor 

system that eliminates the need for a tail rotor. The FAA certified this model in 1994. This 

type is used mainly for the transport of heavy external loads needed for the logging and 

construction industries. Lockheed Martin is developing an autonomous control system that 

will feature specialized mission avionics. The resulting automated K-Max sustained flying 

for more than 12 hours without a human pilot on board. This system may compete with the 

Boeing Little Bird helicopter program. Figure 3.16 shows a K-M-Max helicopter. 

 

 

Figure 3.16: The K-Max Unmanned Helicopter is Based on the K-Max Heavy Lift 
Helicopter as Shown. (source: http://www.kamanaero.com/helicopters/uav.html) 

 

3.4.7 Bell Eagle Eye  

 

 Bell Helicopter is working on the TR918, also known as the Eagle Eye tilt rotor, a 

UAV. It is notable that the FAA has issued an “experimental flight certificate” for the UAV 

which is first time that a vertical-lift UAV has been issued such a certification [94]. This 

model features fly-by-wire flight controls with the ability to carry up to 200 lbs. and an 
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endurance of about five hours. There is also a very similar Navy version. Potential 

customers include the U.S. Marine Corps, the U.S. Army as well as NATO. Figure 3.17 

shows the Bell Eagle Eye helicopter. 

 

 
Figure 3.17: Bell Eagle Eye Helicopter (source: 

http://www.vtol.org/news/issues1205.html) 
 

3.5 Examples of Experimental Helicopters  

 

3.5.1 Unmanned Little Bird (ULB) 

 

 This aircraft is designed by Boeing and is based on an MD 530F helicopter [94]. It 

can fly with or without a safety pilot. It is being tested at the U.S. Army's Yuma Proving 

Grounds which is located in Mesa, Arizona. The ULB is able to take off, hover, and carry 

out unmanned missions on its own. It is able to land itself on a helipad with six inch 

accuracy. The first flight of the ULB was in October 2004. It is able to carry about 740 

pounds of payload; newer models are expected to carry an additional 800 pounds. Funding 

for the ULB is provided by Boeing itself as a proof-of-concept for the Level 5 UAV sensor 

control. The system is adaptable and can be used on other manned and unmanned aircraft 

and can function as a full autopilot. Figure 3.18: An Unmanned Little Bird helicopter. 
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Figure 3.18: An Unmanned Little Bird Helicopter (source: 

http://www.vtol.org/news/issues706.html) 
 

3.5.2 Boeing A160 Humming Bird   

 

 The A160 is a demonstrator aircraft built for the U.S. army; it is also known as the 

“Hummingbird.” The first flight was on January 29, 2002. It weighs approximately 4,000 

lbs. and features rotor blades that are 17 feet long [94]. In addition, the landing gear is 

retractable [88]. The initial engine used was a 300 HP automobile engine, but that will 

change if this model enters production. The VTOL is able to carry about 300 pounds and 

can fly for as long as 24 hours without the need to refuel. Figure 3.19 shows Boeing's 

A160T Hummingbird. 
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Figure 3.19: Boeing's A160T Hummingbird (source: http://www.news.com/8300-

10784_3-7-0.html?keyword=helicopters) 
 

3.5.3 Northrop Grumman's Fire Scout  

 

 The Northrop Grumman's Fire Scout, also known as the MQ-8B, is a close air 

support VTOL and is designed for the U.S. Navy as an anti-submarine craft [94].  

The Fire Scout is in the later stages of development; currently, there is interest from the 

U.S. Army as well as other countries. This unmanned helicopter is able to fly at about 125 

knots and is able to reach an altitude of 20,000 feet. It can also carry up to 600 lbs of 

payload and has an underbelly harpoon that can be used to anchor to a flight deck. 

However, it does not have built-in radar which is needed for combat roles. This UAV does 

not introduce any new or significant features over what is already available, so its future is 

uncertain. Figure 3.20 shows an example of the Fire Scout VTOL.  
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Figure 3.20: Northrop Grumman's Fire Scout (source: 

http://www.weeklystandard.com/weblogs/TWSFP/2007/06/) 
 

3.5.4 The SkyTote 

 

 The SkyTote, an experimental VTOL, is made by Aerovironment INC located in 

Monrovia, California [94]. This company also makes endurance UAVs (solar powered). 

The SkyTote is being developed for the U.S. Air Force. This VTOL is intended as a study 

for a cargo pickup and delivery vehicle. The SkyTote has a wide number of applications. It 

is interesting because it sits on its tail end. A Wankel rotary engine is the source of power, 

allowing for a compact size. Figure 3.21 shows a Sky Tote VTOL. 
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Figure 3.21: Sky Tote (source: http://www.vectorsite.net/twuav_09.html) 

 

3.5.5 The Boeing Dragonfly (X-50) 

 

 The Boeing Dragonfly uses a "canard-rotor wing” (CRW) combined with a narrow 

fuselage. It features a twin-fin canard wing as well as canard fins on the font part of the 

VTOL. This plane is able to function like a VTOL and can also fly like a conventional 

plane. During vertical takeoff, the wing spins much like a helicopter rotor, powered by jet-

exhaust tips on the wings. However, in forward flight, it acts like a traditional wing. Boeing 

is building this plane for possible use by the U.S. Navy and Marine Corps. The first model 

flew on December 3, 2003 [94]. This VTOL weighs about 1,460 lbs and is approximately 

17’ 8” inches long.  

 

 The X-50 uses a Williams F-112 turbofan with exhaust ducting to allow air to be 

diverted to the wingtips (during takeoff and landing), towards the rear in forward flight, 

and to power thrusters that help stabilize the aircraft. The rotor design is of a gimballed hub 

type and is able to function as a regular wing when locked in position during forward flight. 
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There is no need for a tail rotor because the jet-exhaust on the wingtips does not produce 

torque on the fuselage. Hence, the drive system is simpler; however, it is not very efficient 

in hover mode. The VTOL is rated at 430 MPH. There are two X-50 models currently in 

existence [94]. There are also plans for a piloted version. Should the X-50 make it to 

production, it will set the record as the first ever rotary-wing VTOL (with tip-jets) to enter 

service.  Figure 3.22 shows an example of an X-50. 

 

 

 
Figure 3.22: An Example of an X-50.(source: http://www.vectorsite.net/twuav_09.html) 

 

3.5.6 Boeing Aerial Rotor Craft (UCAR) 

 

 Boeing is also working on another experimental program for the U.S. government 

which has the title: "Uninhabited Combat Armed Rotorcraft” (UCAR) [94]. This program 

was initially called "Robotic Rotary Wingman," and work started in the spring of 2002.  

The program called for a robotic rotorcraft that can be fully armed and has the ability to 
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attack targets that are not accessible to the regular (aircraft-based) UAVs such as the 

Predator. The UCAR production versions were expected to retail between $4 million to $8 

million. Both Northrop Grumman and Lockheed Martin were able to make it to the final 

stages of selection and were tasked with making a prototype. The Northrop Grumman 

UCAR featured dual rotors similar to the one that Kaman helicopters use. This was because 

Kaman worked on the design with Northrop Grumman.  

 

  On the other hand, Lockheed Martin presented a UCAR with a single four-blade 

rotor that used a NOTAR system in place of a tail rotor. The entries were designed to be 

"stealthy" and featured internal bays to store weapon systems. The designs featured no tail 

rotor in order to eliminate as much noise as possible. Both designs can fly at about 160 

knots and have a ceiling of 20,000 feet. Figure 3.23 and figure 3.24 show examples of the 

Unmanned Combat Aerial Rotor Craft (UCAR). 

 

 

 

  
Figure 3.23: Lockheed Martin Unmanned Combat Aerial Rotor Craft (UCAR) 

(source: http://www.vectorsite.net/twuav_09.html) 
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Figure 3.24: Northrop Grumman Unmanned Combat Aerial Rotor Craft (UCAR) 

(source: http://www.vectorsite.net/twuav_09.html) 
 

 

3.6 Helicopter Tail Rotor Types  

 

 Most helicopter designs utilize a single main rotor along with a separate rotor to 

control torque. The anti-torque or tail rotor uses a small variable pitch rotor to control spin. 

There are variations on these designs; for example, German, British and American designs 

rotate counter-clockwise (when viewed from the top), while the rest of the designs rotate in 

the other direction [56]. Helicopters that use the single main rotor design experience toque 

as a result of the engine spinning the main rotor; this causes the body of the plane to turn in 

the opposite direction to counter the torque. Figure 3.25 demonstrates the torque produced 

by the main rotor along with the anti-torque that must be generated by the rail rotor. In 

order to control spin, an anti-torque mechanism is used to control the body movement of 

the helicopter and also provide yaw control. There are three common anti-torque 

mechanisms used currently:  

 

 Traditional tail rotor configuration. 

 A Fantail configuration (prevalent in Europe).  

 No Tail Rotor (NOTAR) system. 
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Figure 3.25: Demonstrates the Torque Produced by the Main Rotor Along with the 

Anti-torque that Must be Generated by the Tail Rotor (source: 
http://en.wikipedia.org/wiki/Helicopter) 

 

3.6.1 Traditional Tail Rotor  

 

 Traditional approach to controlling torque uses a small rotor (compared to the 

main rotor) mounted on the tail in a vertical or semi-vertical fashion (assuming the 

helicopter is a single main rotor design). The tail rotor counters the affects of torque by 

either pushing or pulling against the tail of the helicopter. The tail rotor is usually driven 

by a drive shaft connected to the main transmission and then to gear box located at the 

end of the tail boom. The drive shaft design may be a single long shaft or multiple shafts 

connected to each other to allow for more flexibility so it can adjust as the tail boom 

flexes.  The gearbox is used to transfer the power to the tail rotor and, in some 

configurations, includes gearing to optimize the RPMs of the tail rotor. On large 
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helicopters, a vertical stabilizer or airfoil may be integrated in the tail design to provide 

additional torque control. These vertical stabilizers provide some measure of protection 

should the tail rotor fail. 

 

3.6.2 Fantail Rotor 

 

 This configuration is also known as a Fenestron (or Fantail) which consists of a 

ducted fan that replaces the tail rotor. The fan’s housing is built into the tail skin. Another 

difference lies in the number of blades; the fan uses between 8 to 18 blades while a 

conventional tail rotor design uses at most five blades. The blades are also arranged in 

varying distance, so the noise produced will be distributed over a range of frequencies 

thereby giving the impression of quieter operation than a conventional tail rotor. The 

housing allows the fan to rotate faster resulting in smaller blades. The Fenestron tail rotor 

was introduced in the 1960s in Europe, and was used on the SA 340 and later on the 

Aérospatiale SA 341 Gazelle [56]. Currently the Eurocopter uses this design. The U.S. 

Army also used a ducted fan on the, now defunct, RAH-66 Comanche helicopter project 

[56]. Figure 3.26 shows a Fenestron on an EC 120B helicopter. 
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Figure 3.26: The Fenestron Tail System  (source: 
http://en.wikipedia.org/wiki/Helicopter) 

 

3.6.3 No Trail Rotor (NOTAR) 

 

 The acronym NOTAR, or “NO Tail Rotor,” is a somewhat new anti-torque 

control approach. This system was initially developed by Hughes Helicopters. Presently, 

MD Helicopters uses this system in their planes (no tail rotor is needed with this system) 

[56]. The concept uses what is called a Coandă effect; this effect refers to the tendency of 

a fluid stream to attach itself to a convex surface rather than follow its original direction 

[79]. This effect can be demonstrated by holding a spoon under a stream of flowing water 

from a tap. Assuming the water is falling straight down, it will change direction to match 

the convex curvature of the spoon. The NOTAR concept functions in a similar way to an 

airplane wing developing lift. Except that lift-like force is used to provide anti-torque to 

the helicopter. The system uses a variable pitch fan which is enclosed in the back of the 

helicopter fuselage. This fan gets power from the same transmission that powers the main 

rotor. Figure 3.27 shows a diagram of the NOTAR system. 
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Figure 3.27: The NOTAR System. 

 (source: http://en.wikipedia.org/wiki/Helicopter) 
 

 The fan forces low pressure air through the left side of the tail. The low pressure 

air is pushed through slots (two or more) on the tail boom. This causes the downwash 

from the main rotor to follow the surface of the tail boom. The downwash in turn creates 

lift (in a sideway direction) acting as an anti-torque force. The force is proportional to the 

amount of airflow. This is reinforced by a directed jet thrust and vertical stabilizers. Work 

on NOTAR started in 1975 and was pioneered at Hughes Helicopters [56]. The first 

prototype flew in December 1981. Hues fitted an OH6A helicopter model with NOTAR. 

Currently there are about three NOTAR helicopters; they are all made by MD Helicopters. 

Figure 3.28 shows an MD NOTAR helicopter.  
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Figure 3.28: MD NOTAR Helicopter. 

 (source: http://en.wikipedia.org/wiki/Helicopter) 
 

3.7 Two Main Rotor Systems 

 

 These helicopter design configurations use two main rotors. The main advantage of 

these configurations is increased lift. Generally, the need for the tail rotor is eliminated 

since the main rotors can be configured to counteract each other [56]. The counter-rotating 

rotor configuration spins the rotors in opposite directions to counteract the torque generated 

by each rotor. There are three prevalent configurations: 

 

 Tandem rotor configuration: Utilizes two rotors mounted at the front and back of the 

fuselage.  

 Coaxial rotor configuration: Utilizes two rotors mounted on the same vertical axis, one 

on top of the other.  
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 Intermeshing rotor configuration: Utilizes two rotors, mounted side to side, at a slight 

angle to allow the rotors to intermesh. 

 

 There is also a side to side configuration that is referred to as transverse rotor 

configuration. This is usually found on early helicopter designs. Recently, the tilt rotor 

(Osprey) helicopter is being designed as a transverse rotor. The rotors in this configuration 

are located at the wing tips or outriggers.  

 

3.7.1 Tandem Rotor Configuration 

 

 Tandem rotor configurations use two horizontal main rotors mounted at the front 

and aft of the fuselage. There is no need for a tail boom, and the rear rotor is usually 

mounted a little higher than the front. Accelerating and decelerating the helicopter is 

achieved through “differential collective pitch.” In accelerating mode, the aircraft is pitched 

forward by increasing the collective pitch on the tail rotor and decreasing the collective 

pitch on the front rotor at the same time. The result is the tail raising and the front dipping 

slightly. Deceleration, or moving backwards, is achieved by pitching up the front rotors’ 

collective pitch. The latter is increased while the back rotor collective pitch is decreased. In 

order to control the direction of the helicopter (Yaw), opposing cyclic pitch is used. For 

example to rotate right, the front rotor cyclic pitch is tilted to the right while the rear rotor 

cyclic pitch is tilted left [56].  

 

3.7.2 Coaxial Rotor Configuration  

 

 The coaxial rotor configuration uses a pair of rotors that are designed to turn in 

opposing directions [56]. However, both rotors are mounted on the same mast and have the 

same axis of rotation. The coaxial rotors are mounted one on top of the other. The main 

advantage to this type of configuration is that asymmetrical lift is eliminated [56]. 

Asymmetrical lift is generated when the advancing half of the rotor generates more lift than 

the retreating half. This is not a concern while hovering but becomes significant as forward 
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speed increases. The coaxial configuration eliminates this because each advancing half of 

the rotors compensates for the lack of lift of the other half. There are also disadvantages to 

this configuration. The main drawback is the mechanical complexity associated with 

mounting two rotors on the same mast.   

 

3.7.3 Intermeshing Rotor Configuration  

 

 The intermeshing rotor configuration places two rotors side by side on top of the 

fuselage. The rotors are mounted with a slight angle to the vertical so that the blades can 

intermesh. The rotors turn in opposite directions. A common name for this configuration is 

the “synchropter.” The main advantage of this method is the high stability and increased 

lifting power [56]. One of the early successful synchropters was used by Germany during 

WWII in anti submarine activities. The helicopter was called the Flettner Fl 282 Kolibri 

[56]. Kaman, an American company, produced the HH-43 Huskie during the cold War. 

This helicopter was used by the USAF for rescue missions. Currently, Kaman makes a     

K-Max model that is designed to be used as a sky crane. 

 

3.7.4 Transverse Rotor Configuration  

 

 Transverse rotor design is usually used on helicopter fuselages that look more like 

regular winged planes. The rotors are located at the end of the wings. In the absence of 

wings, the rotors are located on structures called outriggers. The transverse rotor 

configuration depends on differential collective pitch to produce roll. This configuration 

was used on early helicopter designs, mainly the Focke-Wulf Fw 61 and the Focke-

Achgelis Fa 223 [56].  The world's largest helicopter uses this configuration. Figure 3.29 

shows the Mil Mi-12 (the biggest helicopter in the world). Recently, this configuration has 

been used on a new class of helicopter, the tilt rotor; examples of these helicopters include 

the Bell XV-15 and the V-22 Osprey. 
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Figure 3.29: The Mil Mi-12 Helicopter. 

 (source: http://en.wikipedia.org/wiki/Helicopter) 
 

3.8 Tip-jet Configuration  

 

 This configuration is unorthodox and unusual. This helicopter design needs only a 

single main rotor powered by nozzles located on the tip of the rotor blade. The nozzles are 

pressurized or small engine (turbines) can be located on the wingtips. This design has been 

proven to work, does not generate torque; however, it is not as fuel efficient as regular 

helicopter designs. It can also be very noisy. Examples of helicopters that used tip-jet 

configuration include the Percival P.74, Hiller YH-32 Hornet; both were not very 

functional. However, the Fairey Jet Gyrodyne and the Fairey Rotodyne (40 passengers) 

were both good flyers [56]. Another concept was called the Rotary Rocket Roton ATV 

which had rockets on the tips of the wings. There are no Tip-jet configurations in 

production, and all of the jet-tip designs never made it past the prototype stage. 
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3.9 The Rotor System  

 

 The main rotor is the part of the helicopter that is responsible for generating lift. It 

consists of a hub, a mast, and two or more rotor blades mounted on the mast. As the blades 

rotate, they generate lift. The main rotor is mounted horizontally, while the tail rotor is 

mounted vertically or semi-vertically. The main function of the tail rotor is to control the 

torque produced by the main rotor. Helicopters with two main rotors do not need a tail rotor 

as anti-torque control is achieved by having the two main rotors spin in opposite directions. 

The mast is essentially a shaft (made of metal) that has a cylindrical shape. The mast 

connects the rotor to the transmission. At the top of the mast, the rotor blades are attached 

to an anchor point called the hub [56]. In main rotors, the methods by which the blades are 

connected to the mast are classified as follows:  

 

 Semi rigid. 

 Rigid. 

 Fully articulated. 

 

3.9.1 Rigid Rotor System  

 

 In this configuration, the hub and mast are rigid, and no movement is allowed 

between them. This rotor system has the advantage of mechanical simplicity over fully 

articulated rotor systems [56]. This system does not have vertical or horizontal hinges; 

hence, the blades do not have the ability flap or drag. However, the blades can be feathered 

[56]. During helicopter operation, the loads generated by flapping and lead/lag have to be 

absorbed by the bending of the blades since there are no hinges. This system requires 

blades that can flex, thereby absorbing forces which would normally require hinges. The 

system exhibits less lag in control response due to its rigidity. There is also an increased 

safety margin in that the rigid rotor system makes the chance of mast bumping minimal. 

Mast bumping is a concern in semi-rigid rotors [56].  
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3.9.2 Semi rigid Rotor System  

 

   The semi rigid rotor system is designed to allow flapping and feathering. The 

majority of semi rigid rotor systems use two blades that are rigidly attached to the rotor hub 

[56]. The hub is attached to the mast by a trunnion bearing (teetering hinge). This 

attachment method allows the hub to tilt freely in relation to the main rotor shaft. The result 

is blades that “see-saw,” so when one blade flaps up, the other blade flaps down. 

Feathering is achieved by the use of a feathering hinge; this hinge works by changing the 

blade pitch angle. Due to the absence of a vertical drag hinge, the lead-lag forces must be 

absorbed by blade bending. Helicopters that use the semi-rigid rotor configuration are 

susceptible to “mast bumping.” This can cause the stops of the rotor flap to shear the mast 

resulting in an unsafe situation. This condition is most likely to occur during low-G 

maneuvers; hence, operations manuals for these helicopters warn about low-G conditions. 

 

3.9.3 Fully Articulated Rotor System  

 

 This type of rotor system attaches each rotor blade to the rotor hub using a series of 

hinges. These hinges allow each blade independent movement. These systems normally use 

three or more rotor blades. Because the blades are fully independent, they can flap, feather, 

lead, or lag individually. The system uses a flapping hinge (horizontal hinge) which enables 

up and down movement of the blade. The flapping movement is designed as a mechanism 

to compensate for asymmetrical lift [56]. The system uses a lead-lag (drag) hinge or 

vertical hinge to enable the rotor blade to move back and forth and is usually attached to 

dampers to limit the amount of movement. The drag hinge allows the rotor system to 

counteract the Coriolis Effect which is caused by acceleration and deceleration. The 

Coriolis Effect is defined as “the apparent deflection of moving objects from a straight path 

when they are viewed from a rotating frame of reference” [95]. The system also allows for 

feathering or changing the pitch angle of the blades to control the thrust of the main rotor 

[56].   
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3.9.4 Modern Rotor Configurations 

 

 Modern rotor systems may combine the above rotor systems to achieve the desired 

design characteristics of a new helicopter. Some types of rotor hubs may use a flexible hub 

that allows the blades to bend without requiring hinges. These flexing configurations are 

called flextures and use composite materials in blade construction. In addition, there is a 

new type of bearing called an elastomeric bearing. These bearings are being used to replace 

the standard roller bearings in newer helicopter designs [56]. Since elastomeric bearings are 

made from a rubber compound, they offer limited movement that has excellent suitability 

for this type of application. The use of flextures and elastomeric bearings means that these 

parts require no lubrication; the latter means less maintenance. These designs have the 

added advantage of having vibration absorption characteristics which translates into less 

stress and extends the service life of helicopter components. 

 

3.10 Helicopter Flight Dynamics  

 

 In order to achieve controllable flight, an aircraft must have three dimensional 

controls. Fixed-wing aircraft achieve this by using small movable surfaces to change the 

flow dynamic of the air passing around it. This process essentially changes the plane’s 

shape achieving directional control [56]. Helicopters, on the other hand, have used a 

different method. In order to change pitch (forward or backwards) and roll (tilting the 

helicopter side to side), the helicopter must change the angle of attack on the main rotor 

blades. The process of changing the angle of attack on the main rotor is called cycling [56]. 

The change in pitch allows for changing the amount of lift at different points in the rotor 

cycle. 

 

3.10.1 Dynamic Control with Single Main Rotor  

 

 In order to achieve control on the vertical axis, the tail rotor is used. This is referred 

to as yaw control. Yaw control is achieved by varying the pitch of the tail rotor which in 
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turn changes the amount of sideway thrust. On most helicopters, yaw is controlled with 

foot pedals. This corresponds to a fixed-wing plane’s rudder control pedals.  

 

 The collective pitch, or collective for short, is the control that adjusts the angle of 

attack on the rotor blades [56]. A larger angle of attack means more lift. A smaller angle of 

attack will provide less lift. This control consists of a lever that is usually located on the left 

side of the pilot. Helicopters take off when the collective is increased and the throttle is 

given power. The throttle control varies the power output of the helicopter engine. The 

engine is connected to the main rotor shaft through a transmission assembly. The throttle 

control is located on the top of the collective control lever. It is much like a motorcycle 

power controller; it is a grip that can be twisted to add power. This throttle allows the pilot 

to control the rotational speed of the engine (RPM). This is important because helicopters 

are designed to run at certain RPMs. There is usually a chart for each helicopter model that 

shows the optimal RPM for a given load (weight) and speed. Too low of an RPM can cause 

a stall condition much like a low airspeed can cause a stall in fixed wing aircraft [56]. High 

RPMs can cause damage to the main rotor hub as well as the drive train. Helicopters 

require that the RPM  be maintained within a narrow range for optimal and safe operation. 

Figure 3.30 shows a summary of stick and pedal controls on a helicopter. 
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Figure 3.30: Stick and Pedal Controls. 

 

 The cyclic pitch control is used to adjust the rotor blade pitch in a cyclic fashion. 

This control, also called the cyclic, allows lift to be varied over the rotating blades so that 

the blades produce more lift on one side than on the other [80]. This variation in lift over 

the rotor disk plane of rotation allows the rotor disc to tilt resulting in range of motions. It 

also allows the pilot to change altitude when flying in a forward direction. This control is 

much like a joystick and is placed directly in front of the pilot. The cyclic allows the pilot 

to control the angle of the rotating section of the swashplate [56]. When the swashplate has 

no tilt, then all the helicopter blades are set to the collective angle. However, when the 

swashplate is tilted, there is a pitch-up at a given azimuth angle with an opposing pitch-

down of the rotor directly across. This creates a sinusoidal variation in the angle of attack 

on the rotor blades which makes the helicopter tilt in same direction as the cyclic. For 
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example, if the cyclic is pushed forward, then the rotor disk is titled in that same direction 

making the helicopter move forward. The pitch and roll movements are shown in figure 

3.31. 

 

Figure 3.31: Pitch and Roll Movements. 

 

3.11 Helicopter Aerodynamic Considerations  

 

 When a helicopter moves through the air, the rotor speed relative to the forward 

velocity becomes an important operational consideration [80]. The forward motion of the 

helicopter causes one side of the rotor blade to move at a speed equal to the rotor tip speed 

plus aircraft speed. This results in higher lift on the advancing blades [56]. However, on the 
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other side of the helicopter, the retreating rotor blades move at rotor tip speed minus the 

aircraft speed. This results in a loss of lift on the retreating side of the rotor. The asymmetry 

of lift becomes more pronounced as the speed increases.  To compensate for this condition, 

lift is decreased on the advancing blades and increased on the retreating blades by adjusting 

the angle of attack. Figure 3.32 illustrates the progressive loss of lift as the helicopter 

reaches its maximum allowable safe airspeed. 
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Figure 3.32: A Chart Showing the Progressive Loss of Lift as the Helicopter Approaches 

Critical Speeds. (source: http://www.globalsecurity.org/military/library/ 
policy/army/accp/al0966/le3.htm) 

  



www.manaraa.com

 76 

 However, there is a limit for lift adjustment; should the angle of attack of any airfoil 

or wing become too high, then the airflow over it may separate and cause a sudden loss of 

lift. The latter results in what is called aerodynamic stall. There are four possible scenarios 

in which this can happen: 

 

 Should the helicopter reach higher speeds, the airflow around the advancing blades can 

reach speeds close to that of the speed of sound. This generates shock waves on the 

rotor that interrupts the airflow flowing over them resulting in loss of lift.  

 Higher speeds also cause the retreating blade to lose lift. This occurs because of the 

lower relative airspeed of the blades (since it is moving opposite to the direction of 

travel). Helicopters correct this lower lift condition by increasing the angle of attack on 

the blades on the retreating side. However, too high an angle can result in aerodynamic 

stall or “retreating blade stall” in this case.  

 If the main rotor RPM becomes too low along with an increase in collective pitch, this 

will result in aerodynamic stall.  

 The “vortex ring state” is a condition that is unique to helicopters; this condition is also 

called “settling with power.” This can occur when a helicopter is descending or 

hovering and happens to contact with its own down-wash. This can cause massive 

amounts of turbulence resulting in loss of lift.  

 

3.11.1 The Autorotation Concept  

 

 Many powered aircraft can glide safely to the ground without power. Fixed wing 

aircraft are able to glide using lift generated from their wings in a controlled fall. 

Helicopters are also powered aircraft; however, they have limitations in gliding. This is 

achieved by using the inertia in the rotors; this has to be combined with a downward glide 

forcing the air to flow through them [56]. In this operation, the main rotor works like a 

windmill, turning as the air passes through it. This approach is autorotation; it makes it 

possible to survive instances where there is a sudden loss of power (provided that the drive 

train is intact). Since the tail rotor is connected to the main rotor by the transmission, 
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spinning the main rotor by autorotation provides all flight controls even though there is no 

engine power. However, autorotation can only be performed within certain height and 

speed ranges; outside of these ranges this procedure is not possible. Figure 3.33 shows a 

height-velocity diagram. 

 

 
Figure 3.33: The Height Velocity Diagram. (source: http://en.wikipedia.org/wiki/Height-

velocity_diagram) 
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3.11.2 Stability 

 

 Fixed wing aircraft designs are usually very stable. If a fixed-wing aircraft 

experiences a gust of wind or if the pilot changes the controls to cause a sudden yaw, roll, 

or other motion, then the design properties of the plane will counteract the movement and 

return the aircraft to its original heading [56]. Also fixed wing aircraft designs have enough 

built-in stability that constant pilot input is not needed. The plane tends to fly itself for the 

most part. However, this is not the case with helicopters which are, inherently, not stable. 

In order to just hover, the pilot must provide continuous input and make adjustments to the 

flight surfaces to keep the helicopter from drifting. Because of the myriad of forces that act 

on a helicopter, a net force (such as a wind gust) will cause the helicopter to move (and stay 

moving) in that direction [81]. Furthermore, the cyclic must be adjusted to continue 

hovering in the same location.  

 

 Helicopter flight controls are affected by one another; for example, if the cyclic is 

changed to pitch forward (so that the helicopter can move forward), this will result in some 

loss of lift which must be compensated for by increasing the collective to generate more 

lift. However, increasing the collective results in slower rotor speed; thus, in order to 

maintain the correct rotor RPM, the throttle must be increased. Changes in the collective 

setting will also result in power changes (changing main rotor torque); this means that the 

pilot must compensate by adjusting the tail rotor using the foot pedals. Small helicopters 

are inherently very unstable, making them require constant cyclic adjustment in flight [56].  

 

3.11.3 Helicopter Limitations  

 

 The main limitation of helicopters is their relatively slow speed. The fastest 

production helicopter in the world, the Westland (modified) G-Lynx, can only fly about 

250 MPH [81]. Most production helicopters rate between 150 to 200 MPH. The theoretical 

top speed for a helicopter is 250 MPH [81]. The factors that contribute to the helicopter’s 

limited speed are as follows: 
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• If the helicopter is hovering, then the speed of the rotor blade’s outer tips is the result of 

two variables: the RPM and length of the rotor blade. However, when the helicopter is 

moving through the air, a third variable comes into play when determining the rotor blade 

speed. That variable is the forward velocity of the helicopter. The difference between the 

speed of the helicopter and the rotational velocity of the blades becomes significant at 

higher forward velocities. This means that advancing rotor blade speed is the sum of the 

speed of the rotor blade at the tip and the forward velocity of the helicopter. Under certain 

conditions, the rotor blade’s tip may exceed the speed of sound resulting in shock waves. 

These shock waves disrupt the airflow over the blades to the extend that they cause stalling, 

increase drag, and may cause excessive vibration. One possible solution to this condition is 

to use spiraling rotors [56]. However, current technology and metallurgy does not provide 

the materials needed to construct spiraling rotors.  

 

• Rotor blades are designed to be flexible; this is done so that they flex with the direction 

of travel of the rotor. That means they should provide more lift at slower speeds. This 

comes into play because of the asymmetrical lift generated as the helicopter moves 

forward. When the rotor blade moves in the same direction as the helicopter, it is moving 

faster through the air. However, when the blade spins away from the direction of travel, 

then its speed is slower in relation to the air around it. The blade is designed to twist and 

lift with speed such that an advancing blade has a smaller angle of attack while the 

retreating blade develops more lift because it flaps down producing a higher angle of 

attack. At high speeds, excessive flap may develop while the retreating blade may stall due 

to a very high angle of attack. Helicopter designers rate helicopters on their “maximum safe 

forward speed” with a “Velocity, Never Exceed” or VNE rating.  

 

• The design of the rotor head is another limiting factor on flight dynamics. Flight 

maneuvers that generate negative-G conditions are an issue in a semi-rigid rotor system. 

This will cause the blades to flap down and strike the airframe or tail boom resulting in a 

crash. 
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• Another concern with helicopters is the vortex ring effect [56]. This condition is 

sometimes caused by the downward wind from the rotor blade creating a circular vortex 

around the rotor blades. Terrain, rain, wind, and other factors can affect how this ring is 

formed and may cause the helicopter to lose some lift. If enough lift is lost, a condition 

called “setting with power” ensues which will cause the helicopter to hit the ground.  

 

3.12 Noise and Vibration  

 

 Helicopters can be noisy, coupled with the fact that they fly relatively close to the 

ground and over cities which makes noise control an important concern. New designs to 

limit helicopter noise were due to heliports being closed and flight constraints over some 

national parks.  

 

 Helicopters produce vibrations as they run; an unadjusted helicopter can produce 

massive amounts of vibrations that result in mechanical failure. In order to deal with 

vibration, helicopter rotors can be adjusted for height and pitch [56]. There are also 

dampers that control vibration for height and pitch. There are also mechanical systems 

that depend on feedback to control vibration. However, vibration measurement is 

difficult. A common way to adjust rotors is to use a strobe flash to determine if the 

painted markings on rotors are aligned.  
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CHAPTER 4 

 

THE PROPOSED AUTOPILOT 

  

4.1 The Autopilot Model 
 

 The autopilot derived in this dissertation is designed to be a component of a larger 

system. The pilot may or may not be physically located on the helicopter. Figure 4.1 

shows an example of a human pilot issuing control commands (mechanically) using a 

joystick and receiving feedback from the helicopter (gauges). The feedback conveys the 

current state of the helicopter allowing the pilot to issue new commands based on the 

current state of the machine.   
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Figure 4.1:  A Human Pilot Controlling a Helicopter Using a Joystick and Sensors. 

 

 However, the helicopter can also be controlled with an autopilot. Figure 4.2 shows 

a Proportional, Integral, Derivative (PID) controller, a fuzzy logic controller (Fuzzy), or a 

human pilot using an interface (electronic, mechanical or other) to send commands to a 

helicopter and receives feedback. Feedback can be in an electronic, mechanical, or other 

form; however, it is assumed that, regardless of signal format, control and feedback 

signals can be measured and recorded. The pilot is also given set-point data that convey 

the desired destination(s). The set-point data denote points in space that specify the 

desired flight path. The pilot (PID or otherwise) would then use the set-point data and the 

feedback from the helicopter to determine the next set of commands to issue. The loop 

continues until the helicopter has executed the desired flight path. The process of deriving 

a control module starts with the ‘‘observation” of a pilot be it a PID controller, Fuzzy 

controller, human, or other control technology executing a maneuver on a small 

unmanned  helicopter as shown in figure 4.2.   
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4.2 The Proposed Autopilot  
 

 Figure 4.3 demonstrates the proposed pilot interfacing with the helicopter. The 

auto pilot proposed in this dissertation would interface directly with sensors on the 

helicopter and relay commands directly to the helicopter controls. Note the lack of set-

point data input as the proposed pilot does not need this information. The proposed pilot 

will be an Artificial Intelligence (AI) derived set of control equations. The ‘‘observed’’ 

data is collected from a Fuzzy pilot flying a pre-selected set of maneuvers. Once data 

collection is complete, the information is then fed to a GA/SA based algorithm that 

generates control functions. These functions consist of specifically selected mathematical 

building blocks that are designed to recreate the ‘‘observed’’ output (control values to the 

helicopter) when given flight time (t). Hence, at t=0, the derived functions should return 

the correct control signal. Likewise, when the functions are given t=n, they must return 

the control signal value initially observed at time n. Figure 4.4 shows a table of 

‘‘observed’’ values used by a GA program to derive a set of functions that are, in turn, 

used to control a helicopter. Note that the actual algorithm used is a GA/SA hybrid.  
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Figure 4.2: A PID or Fuzzy or Human Pilot Controlling a Remote Helicopter.  
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Figure 4.3: Proposed Auto Pilot Module Controlling a Remote Helicopter. 

 

4.3 Collecting ‘Observed’ Data  
 

 Figure 4.5 demonstrates the method used to collect data. A recording module is 

placed on the input and output side of the helicopter. Next, the Fuzzy controller executes 

a pre-determined maneuver. The maneuver is timed from the start to completion. This 

process can be repeated to collect data for additional maneuvers.  

 

 

4.3.1 Observed Data Source 
 

 The source for the ‘‘observed’’ data is a virtual helicopter created in MATLAB. 

The virtual helicopter takes four control (input) parameters and generates five outputs as 

shown in figure 4.6. The input parameters are the collective, pedal, longitudinal, and 

lateral. The outputs are the x-axis location, the y-axis location, the z-axis location, the 

yaw reading, and the elapsed time. This data is used in the derivation and the testing of 

the GA/SA pilot. The virtual helicopter was coded by a group of USF students to test 
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automated pilots including a Fuzzy controller. The details on creating the helicopter 

model are outside the scope of this dissertation. 

 

 
Figure 4.4: GA/SA Derived Math Equation Controlling a Remote Helicopter. 
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   Figure 4.5: Collecting Training Data for the GA/SA Search Algorithm. 

 

 
Figure 4.6: Virtual Helicopter Input/Output Parameters. 
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4.3.2 The Control Equations    
  

 First, observed input data and flight time are provided to the GA/SA search 

algorithm as shown in figure 4.4. The GA/SA search algorithm generates control 

equations, one per control signal. The four equations comprise the proposed auto-pilot 

and are then used to control the helicopter on their own given flight time as the only 

input. Figure 4.7 shows how the four control equations fly the helicopter.  

  

 
Figure 4.7: Control Equations flying the virtual helicopter. 
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4.4 The Autopilot and Surrounding Architecture 

 

 It is assumed that the auto-pilot module will be embedded in control architecture. 

Figure 4.7 shows a typical AI control architecture based on subsumption. This 

architecture is based on breaking down complex intellegent behaviors into a series of 

behavioral units each tasked with implementing a specific goal. The layers are generally 

laid out from reactive (basic response) to more deliberative layers that require complex 

processing [96]. For example, a robot’s most primitive subsumption based layer is to 

back out if it hits an object. The more complex layers deal with long range goals such as 

avoiding the same obstacle to higher layers that deal with completing the mission. 

Generally, the layers get more abstract as they move from reactive to more deliberative 

layers [96]. Therefore, each layer is designed to subsume the behavior of the layers below 

it. As such, “reach a goal” layer must be placed above a more primitive layer that keeps 

control of the plane. The latter layer is itself  placed over a more primitive layer which 

avoids any situations that can lead to a crash. The main advantage of this paradigm is that 

separate layers can over rule other layers. As such, the most reactive layers work much 

like reflexes while the more deliberative layers are pre-occupied with reaching the goal. 

The proposed pilot can be located parallel to the main pilot. Should the main pilot or GPS 

experience a failure, the proposed pilot can take over and complete the current maneuver 

or exeucte another manuever such as ‘‘return to base.” 

 

4.4.1  Helicopter Control Architecture 

 
  Figure 4.7 demonstrates the hierarchy of control modules (white boxes) from 

most deliberative to most reactive; the most deliberative module is that of the mission 

planner. It is responsible for understanding the mission goal and communicating the 

mission parameters in a format that the navigator module can use. The lower level 

navigator then generates a set of flight segments that, together, complete the mission; the 

navigator must ensure that each segment is executed properly by the pilot module. Hence, 

the navigator sends the pilot module a set of specific actions. The low level auto-pilot 

module is reactive, concerned mainly with executing a given flight maneuver as 
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accurately as possible. The lowest, and strictly reactive, module in the control hierarchy 

is the Safety System; this module is tasked with insuring that commands from the auto-

pilot module do not exceed the physical limitations of the helicopter or result in an unsafe 

helicopter flight state.  If the pilot module issues control signals that exceed the safe flight 

envelope, then the Safety System would override or trim these signals so that the 

resulting signals are ‘‘safe’’ and do not lead to loss of control.   

 

4.4.2 Pilot Module Architecture 

 
 A detailed block diagram of the auto-pilot module is shown in Figure 4.8. The 

pilot module is interconnected to the Navigator module, the GPS module, the Monitoring 

System, the Safety System, and most importantly there are interfaces that provide it 

sensor readings and outputs to the helicopter flight controls. The Safety System module is 

essentially transparent to the pilot module. The navigator sends commands to the pilot 

module; these commands instruct the pilot to execute a single maneuver. The monitoring 

system in conjunction with GPS help the navigation module determines if a flight 

maneuver was executed correctly (meaning that the helicopter is now where the navigator 

expected it to be after completing the flight maneuver). In case of a discrepancy, the 

system reacts by signaling with an error code. The system uses GPS readings to 

determine the error level. The error signals as depicted in Figure 4.8 demonstrate how 

errors are communicated. The external modules presented here are ‘‘assumed,’’ and their 

exact function is outside the scope of this research which is concerned with learning the 

actions of a pilot executing a specific maneuver. 

 

 



www.manaraa.com

 91 

 
Figure 4.8: Helicopter Control Architecture. 

 
4.4.3 Pilot Module Behavior 

 
 The pilot module is assumed to have some general structure that supports error 

detection; a possible example of a pilot module is shown in figure 4.9. Note that the main 

pilot is able to detect an error and try to recover. However, if recovery is not possible due 

to a GPS or sensor fault, the pilot should be able to pass control to a backup pilot. In this 

case, it will be the GA/SA pilot that functions independently of location data (GPS) and 

set-point data. The figure shows the main pilot executing a loop that checks if each 

command is executed successfully. For example, the right turn command is issued by the 

Navigator layer and is then executed by the main pilot. If the maneuver runs correctly, 

then the main pilot is ready for the next command. If there is an error, then an error 

recovery is attempted. If the pilot is unable to recover from the error after a 

(predetermined) number of attempts, then it has the option of passing the control to the 

backup pilot. It is assumed that the safety system has built in stabilization such as an 

autogyro or a similar system. This built in stabilization automatically corrects for wind 

gusts, wind direction, and other external weather conditions that can change a 

helicopter’s heading. The stabilization system is important since the GA/SA pilot flies in 
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open-loop. The latter will insure that the control formulas are useful regardless of wind-

direction.  

 

 
Figure 4.9: An Example of an Autopilot Module with Error Detection.  
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CHAPTER 5 

 

TECHNIQUE OF IMPLEMENTING A SOLUTION 

 
 5.1 Summary of Search Goals  

  

 The goal of this dissertation is to generate a set of control formulas that will act as 

an autopilot and fly a pre-selected maneuver. A GA/SA search algorithm will be used to 

create the control formulas using helicopter control signals and flight time. If the proper 

set of mathematical functions are selected and used as building blocks, then the GA/SA 

should be able to generate control formulas. A set of four pre-selected maneuvers are 

used as test cases. These maneuvers are initially flown by a Fuzzy Controller pilot, 

following set-points or “points in space” that specify the desired path. It is assumed that 

the Fuzzy pilot is well-tuned and is able to follow the set-points. Inputs and outputs were 

recorded in real-time as each maneuver was performed inside the MATLAB 

environment. The Fuzzy Controller pilot acts as an observed-data “source” (the data 

source can be a human pilot, a Fuzzy Controller pilot, a PID controller, or any technology 

that is able to execute these maneuvers correctly). The collected data includes inputs to 

the pilot as well as output from the pilot to the helicopter. The virtual helicopter was built 

using MATLAB version 7.1.0.246. Table 5.1 shows each of the four selected maneuvers 

along with their respective flight time and a small graph showing the path as executed by 

the Fuzzy Controller pilot.  
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5.2 The Flight Maneuvers  

  

 The four pre-selected flight maneuvers are non-aggressive flight maneuvers that 

are designed to provide a complex flight pattern. The maneuvers selected also show the 

flexibility of the auto-pilot in that it is able to duplicate different maneuvers. 

 
Table 5.1: Set of Maneuvers to be Duplicated, 

Corresponding Flight Times and Flight Pattern Graphs. 
 

 Flight Pattern Flight Time (seconds) Flight Pattern Graph 

1 In flight loops 120 

-60

-40

-20

0

20

40

60

-100

-50

0

50

100

150

0

5

10

15

 
2 Takeoff and U-Turn 

 
120 

0

50

100

-100
0

100
200
0

5

10

15

 
3 Ascending Spiral 30 

-50

0

50

-30-20-10010

0

5

10

15

20

25

30

 
4 In flight loops with 

changing height 
150 

-100 -50 0 50
-200

0
200

0

20

40

60

80

100

120
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5.2.1 Simulating the Maneuvers  

 

 As the fuzzy logic controller (source) executes each maneuver on the MATLAB 

helicopter, the source’s actions and feedback from the virtual helicopter are recorded for 

the entire duration of the flight. The collected data is then converted to a tabular format 

that can be used by the GA/SA search algorithm. The data is also used later for testing. 

 

5.2.2 Approach Used in Duplicating the Maneuvers   

 

There are a number of approaches that can be used to copy flight maneuvers. Perhaps the 

simplest approach is to use a lookup table that takes in an input value and gives 

immediate feedback. The lookup table is 100% accurate with the training set and it needs 

no training time. However, no new knowledge is derived, and the system is not modeled. 

Soft-computing techniques are a good alternative that offer potential. However, not all 

soft techniques provide output that can be mathematically analyzed. The goal of the 

GA/SA search algorithm is to derive a solution in terms of an equation with mathematical 

components selected by the tester. Mathematical formulas are straight forward to 

implement and provide insight as to how flight time is used in calculating control signals. 

Formulas show exactly how the input (Flight time) and outputs are related and allow the 

researcher to model the system. The results can be analyzed and studied further to reach 

new conclusions about the system. 

 

Since the proposed method uses genetic search and simulated annealing to assemble a 

formula out of a set of mathematical building blocks, any inherent bias may be 

minimized by using the two search algorithms. Both search algorithms are run in parallel 

or they can be run serially. Hence, they are independent of each other and that makes it 

more likely for one to generate an optimal solution. Naturally, the likelihood of a unique 

formula depends on the number of maxima points in the data. The algorithm proposed 

provides a versatile and powerful search tool that can be used in investigating, verifying, 

and analyzing problems where the relationship between the independent and dependent 
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variables is not well understood or known. The search itself is guided by a fitness 

function selected for the purpose. The function can be changed or adjusted as needed. A 

typical search arrangement is shown in figure 5.1. 

 
Figure 5.1:  Typical Search Arrangement Using GA/SA Algorithms to Search in 

Parallel. 
 

5.2.3 Why Use a GA/SA Search Algorithm to Duplicate Maneuvers  

  

 Genetic Algorithms and Simulated Annealing techniques were selected as the 

preferred search method after reviewing the literature for a robust and effective search 

technique for this type of problem. These guided hill-climbing techniques are among one of 

the most effective and robust search techniques [103]. However, there is debate as to which 

is more effective, Genetic Algorithms or Simulated Annealing. There are many studies on 

the subject [104]. Theoretically Genetic Algorithms are very similar to Simulated 

Annealing in the way they search with the main difference being multiple populations vs. a 

single solution [103].  

 

 Both methods assume that ‘good solutions’ are found ‘near’ current good solutions 

[103]. However, a GA assumes that combinations of two parents will usually lead to a 

‘near’ solution [103]. Hence, for some applications, evaluating solutions near an existing 

solution may be more efficient, giving the advantage to Simulated Annealing. Still, not all 

comparisons between the two are accurate because many papers do not consider execution 

time [103]. There is no consensus among the scientific community other than for some 

problems one may be more optimal than the other [105]. In general, it is believed that a GA 

takes longer but finds slightly better solutions [103]. An SA is believed to converge faster. 
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As such, one may do better than the other depending on the search space. For this type of 

exploratory work it is better to have flexibility by using both. In addition, if there are 

multiple processors on a system, then there is an advantage to search in parallel as shown in 

figure 5.1. 

 

5.2.4 Comprehensive Identification from FrEquency Responses (CIFER) 

 

 It is worth noting that a system NASA uses, called Comprehensive Identification 

from FrEquency Responses (CIFER), works by measuring frequency response. This system 

has some similarities to the proposed method. CIFER is summarized on NASA’s website 

as: “System identification is a procedure by which a mathematical description of vehicle or 

component dynamic behavior is extracted from test data. It can be thought of as an inverse 

of simulation.” [97]. Both CIFER and the proposed method have system modeling 

capability. CIFER is used to derive a frequency-based dynamic description of a vehicle. 

The proposed method generates mathematical equations that can control a vehicle or 

describe a vehicle. However, CIFER uses a set of proprietary, non-parametric, frequency 

responses that describe the coupled characteristics of a given system. CIFER depends on 

“advanced Chirp-Z transform” and “composite optimal window techniques” that are 

designed to have better performance than Fast Fourier Transforms [99]. The “Chirp z-

transform” is based on the z-transform with one of its functions having a linearly changing 

frequency [98]. In essence, CIFER uses “sophisticated nonlinear search algorithms” to 

model a system [99]. This is in contrast to the proposed method which derives formulas 

based on functions of the tester’s choice. Also, the proposed method uses genetic and 

simulated annealing search techniques instead of Fourier Transforms.A search of the 

literature indicated that there are no studies that investigate the ability of Genetic 

Algorithms and Simulated Annealing to find specific mathematical formulas from a set of 

data the way that they are applied in this dissertation.  The work done in this dissertation 

would further research in the field of Artificial Intelligence by introducing a new search 

tool that can be applied to derive new and unique formulas that may be used to control 

automated systems.  
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5.3 Genetic Algorithms and Simulated Annealing  

 

 The science of computer-based genetic algorithms is relatively young; the earliest 

research started in the late 1950s. Researchers first stumbled upon genetic-like algorithms 

as a result of writing algorithms for search in artificial systems.  A number of biologists 

used computers to perform simulations of genetic systems. Some of the earlier studies are 

listed below: 

 

 Simulations of computer-based evolution began around 1954 with the work of Nils Aall 

Barricelli [68]. 

 In 1957, Nils Aall Barricelli authored a paper that discussed a symbio-genetic evolution 

process that was achieved by artificial methods [68]. 

 Also in 1957, Alex Fraser, an Australian quantitative geneticist, authored a set of 

papers that discussed the artificial selection and its simulation. The work discussed using 

multiple loci to control a measurable trait [68]. 

 In 1960, Fraser wrote on the simulation of genetic systems using computers [68]. 

 The field of artificial evolution achieved prominence during the 1960s and 1970s. This 

was largely due to the work of Ingo Rechenberg and Hans-Paul Schwefel. These scientists 

used evolution-based search and optimization techniques to solve difficult engineering 

problems [68]. 

 In 1962, Barricelli authored a follow-up paper titled: “Numerical testing of evolution 

theories.” 

 In the 1970s, John Holland researched Genetic algorithms and released a book in 1975 

titled “Adaptation in Natural and Artificial Systems”[69]. 

 Until the 1980s, GAs were mainly used in theory-based research. However, the first 

International Conference on Genetic Algorithms signaled a new era where GAs became 

widely accepted as a valid tool for problem solving. The conference was held in Pittsburgh, 

Pennsylvania [68]. 
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 In the 1980s, desktop computers became more powerful. This allowed more researchers 

to conduct genetic-based research. This further contributed to the popularity and 

acceptance of genetic algorithms and genetic-based search techniques [68]. 

 The first commercially available genetic algorithm product was introduced in the late 

1980s by General Electric. The product was a mainframe toolkit designed for use in 

industrial processes [68]. 

 Also in the late 1980s, Axcelis Incorporated introduced the world’s second genetic 

commercial product. It was called Evolver, a GA-based problem solving program for 

desktop computers. It was the first GA commercial product made for desktop computers 

[68]. 

 John Koza used genetic programming to solve problems; Koza’s technique is different 

in that computer programs, and not function parameters, are optimized [68]. 

 

Some of the early studies were mainly concerned with understanding genetics and 

evolution as it existed in nature. However, Fraser's work did not differ much from the 

modern definition of a genetic algorithm. Fraser’s goal was to simulate the evolution of a 

small population represented genetically by a 15-bit binary string. He derived new 

generations and calculated the percentage of acceptable solutions (those that met or 

exceeded a pre-set threshold of performance).  Fraser came up with a useful optimization 

method [44]. However, Fraser did not apply nor did he write anything that indicated the 

application of his algorithm to artificial systems. One of Fraser’s contemporaries, John 

Holland, was also working on computer-based genetic algorithms. Holland is regarded as 

the father of genetic algorithms. The branch of computer genetic algorithms evolved from 

these early studies [45]. 

 

5.3.1 Genetic Algorithms and Search Space 

 

 Genetic algorithms work by searching for a desired solution among a collection of 

candidate solutions. The search for an optimized solution among a set of solutions is 

termed as searching within a “search space.” There are many approaches to searching a 
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“search space.” Some are brute force approaches such as an exhaustive search where every 

possible candidate solution is tried until the best one is found. Exhaustive search works 

very well, for it guarantees an optimal outcome. However, there is a large time overhead 

associated with exhaustive search. For very large search spaces, exhaustive search is not 

practical. There is also random search where a candidate solution is selected at random, 

evaluated, and at the end of an allotted time period, the best solution found is returned. This 

is also not a very practical approach. More “intelligent” search algorithms try and use the 

experience of past searches to “guide” the search. Genetic search is a guided random search 

that “hones in” on a solution as time goes on.  

 

5.3.2 Terminology 

 

 The terminology used in computer science based genetic algorithms is derived from 

biological terms. In biology, the values that a gene can have are called alleles [70]. For 

example, hair color alleles are blond, brown, or red. The location of the gene within the 

string of genes, the chromosome, is called the locus or position on the chromosome. The 

organism's genome is the term used to describe the collection of all chromosomes bundled 

together while the term genotype is actually the specific set of genes that are in a genome 

[70]. Hence, if two organisms have identical genomes, the latter implies that they have the 

same genotype. The physical characteristics displayed by an organism are referred to as the 

phenotype which is the manifestation of the genotype in an organism.  

 

 Figure 5.2 shows an example of genetic reproduction in which genes of both parents 

contribute to create an offspring. In figure 5.2, the split point is chosen and denoted with a 

line. Figure 5.3 demonstrates a mutation step. 

 

 In computer based genetic algorithms, a chromosome is usually associated with a 

candidate solution of the problem being considered. These solutions are usually encoded as 

bit strings. The “genes” are represented each as a single bit or a series of short blocks that 

are comprised of adjacent bits. It is these bits that encode a particular atomic element of a 
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possible solution. The term allele refers to the values that can be set in the chromosome(s); 

if the encoding is binary based, then the values for the allele are either 0 or 1. A larger 

alphabet may be used that has more values; hence, more alleles are possible at each locus 

[68]. The crossover operation usually involves the inter-exchange of genetic material 

between two parents. The mutation operation involves toggling a bit whose locus is 

randomly chosen. If the alphabet is larger than a binary alphabet, then mutation involves 

replacing a symbol with another randomly chosen one (from the alphabet of course) at a 

randomly chosen locus [68]. 

 

 
Figure 5.2: Example of Genetic Crossover. 
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 For the most part, applications of genetic algorithms, the genotype of an individual 

in the population is configured using bits strings. That same individual can be encoded and 

configured using a more complex alphabet if needed. 

 

 
Figure 5.3: Example of Genetic Mutation. 

 

5.3.3 The Search Space 

 

 The idea a "search space" refers to a collection of candidate solutions of some 

problem and the idea of a “distance” between candidate solutions. If an algorithm is used 

to search for a sequence of numbers that are the combination to a binary key, then the 

search space is the collection of all possible sequences of 0’s and 1’s. Hence, depending 

on the length of the key, this can be a very large number. However, if it is known that the 

key is no longer than 1000 bits long, a substantial amount of the search space can be 
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eliminated from the search. Then candidate solutions may have the following format: 

[01110101101010101010…. ]. The latter is essentially a sequence of 0’s and 1’s that 

represent one possible value for a key. The distance between any two given solutions 

may be defined as the number of positions in which the numbers at corresponding 

positions are different. As such, the distance between 01100100000 and 01111100000 is 

2. An algorithm that searches this space must decide which candidate solutions to 

combine to produce better “offspring” solutions from two parent solutions. Genetic 

algorithms assume that high-fitness “parent” candidate solutions from different areas in 

the search space may be combined to produce a high-fitness “offspring” candidate 

solution. The term “candidate solution” is used to denote a possible solution that is 

presented to selection.  

 

5.3.4 The Fitness Landscape 

  There is also the concept of a “fitness landscape”. This concept was introduced by 

biologist Sewell Wright (1931) while working on population genetics [73]. Therefore, a 

fitness landscape is essentially a representation of the space of all possible genotypes and 

their respective fitness values. Where a genotype is an encoded string of l bits that 

represent a solution, each genotype should have an associated fitness value that is 

calculated using some fitness function. The distance between two genotypes can be 

measured as the “Hamming distance” which is the number of locations where the bits 

differ between the two solutions [72]. Consequently, a fitness landscape can be 

represented as an (l + 1) dimensional plot where each genotype is given a point in the l 

dimensions, and its corresponding fitness value is plotted along the (l + 1) axis; the latter 

gives rise to a graphical representation of the fitness landscape. For example, to keep 

things straight forward, a landscape of l = 2 is assumed to exist with real fitness values 

for each genotype. The fitness landscape associated with this example may look like the 

one in fig.5.4 where the peaks represent high fitness or local maxima and the valleys low 

fitness or local minima. 
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Figure 5.4: An Example of a Fitness Landscape. (source: 
http://www.i3s.unice.fr/~verel/recherche.html) 

 The term “landscape” is used because plotting the fitness values in this manner 

may form “hills” and “valleys” and other topographical attributes that are similar to 

actual physical landscapes. Wright proposed that evolution causes populations to 

migrate on these landscapes in certain patterns and that “adaptation” to an environment 

is evident in the movement toward local hill tops which represent local maxima [73]. 

The local maxima may not necessarily be the most optimal point in the landscape, but 

any movement away from this point (even very small movement) may result in 

degradation of fitness. Genetic algorithms use crossover and mutation operations as 

tool to move the population around the fitness function landscape as shown in fig.5.4. 

 

5.3.5 Possible Definition of a Genetic Algorithm 

  Computer science literature does not present a universal definition of what a 

genetic algorithm should be [68]. However, different genetic search methods share a 

set of elements that makes them a genetic search algorithm. These attributes are: 
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 Chromosome populations. 

 Survival of the fittest, meaning a higher fitness of a solution makes it more likely to 
be     selected. 

 A crossover algorithm to produce new offspring. 

 Mutation of new offspring, which is usually done randomly. 

 

  The chromosomes in a GA population typically take the form of bit strings. 

Each locus in the chromosome has two possible alleles: 0 and 1. Each chromosome can 

be thought of as a point in the search space of candidate solutions. Survival of the 

fittest individual solution usually requires a fitness function that assigns a score or 

fitness to each member of the current population. Crossover and mutation are strategies 

used to generate new offspring. 

 

 Genetic algorithms can be defined as adaptive approaches that can be used to solve 

search-and-optimization problems in an efficient manner [48]. They operate much like 

natural genetic algorithms in utilizing the concepts of natural selection and survival of the 

fittest to produce the next generation. A solution is evolved over time, granted that the 

search domain is reasonably understood, and the genetic algorithm is properly coded. 

5.3.6 Genetic Algorithm Cycle 

 

 Computer genetic algorithms work in the following manner: a group of solutions, 

also known as a population, is maintained where each solution is usually encoded as a 

string of zeros and ones or other symbols. The encoded parameters represent some point in 

the solution plane. Also, each solution is represented as a single independent unit. There are 

many ways to encode information that represent a solution, the most popular of which is 

using 0’s and 1’s.  

 

 A new population, the next generation, is derived from the current generation 

through a process similar to that found in nature; as such, genetic search uses reproduction 
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and mutation of genetic information resulting in a new unit that is unlike either parent. The 

new population of solutions is not identical to the current generation but contains pieces of 

it. The pieces are selected in a way that the average fitness of the new population increases 

with each new generation. Thus, each successive unit in the new population contains bits or 

some genes of their predecessors. However, each new unit is different and thus each 

successive population represents a class of new solutions that are more optimized. 

Reproduction occurs by selecting two parent units from a pool of units pre-selected for 

reproduction. This pool consists of units that have high performance or fitness values. For 

example, the GA may select the top-performing 30% of solutions for reproduction. Once 

the two parents are selected, the GA derives one or more new units from them using 

crossover reproduction techniques. The crossover process works by selecting a split point; 

bits to the right of this split point are swapped with the corresponding bits of the second 

parent. This produces a child unit that has bits of both parents [49]. 

 

 The type of split just described is called single point crossover. A split point is 

usually selected at random and thus can be anywhere. In case the first bit to the left is 

selected, the resulting offspring is essentially a copy of one of its parents. Another type of 

crossover is called the 3-point crossover and involves selecting two split points on both 

parents. Next, the bits between the split points are swapped to create a new unit. This 

second technique offers more flexibility in the sense that it’s possible to slice a string of 

bits and exchange it with another to create a new unit. Another type of crossover, multiple 

point crossover, involves selecting many split points at random. This crossover technique 

takes the 3-point split a step further by allowing the algorithm to create many bit strings of 

varying lengths.  

 

 Regardless of the crossover method utilized, the recombination process is repeated 

until the desired number of new units is generated so that the next generation has the 

correct number of individuals. Once the new population is created, a small number of genes 

are randomly selected and then mutated. Generally, mutation is applied very conservatively 

and is used as a sort of wildcard to introduce a random element in the genetic pool; 
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sometimes it works to the disadvantage of the search. However, research has shown that, 

overall, mutation works [46]. It works by jumping to a random point in the search domain; 

mutation sometimes leads to the discovery of maxima that may have been missed or may 

not be discovered for many generations. Therefore, it speeds up the search and makes it 

more effective.  

 

 The new population is derived and evaluated for fitness. A subset population 

consisting of better performing units is then selected. Next a new generation is derived 

from this subset [49]. The process is repeated over and over until a pre-set fitness value is 

achieved. However, it is not always known what the best possible solution is; this is usually 

due to a problem domain that is not well understood. In this case, the search is limited to a 

fixed number of generations or a fixed amount of computer time.  In fact, genetic 

algorithms search a group of solutions, called a population, in parallel. Generally speaking, 

genetic algorithms are relatively simple to implement; usually, all that is needed is a 

random-number-generator function, a string copying-and-manipulating function, and a 

fitness-measuring function [47, 48].   

 

5.3.7 Why Genetic Search 

 Regardless of differences in crossover or mutation strategies, the basic steps 

mentioned above inherently provide genetic algorithms with certain advantages when 

compared to other search techniques. For a start, genetic algorithms avoid getting stuck in 

local maxima by searching in parallel from a number of different individual solutions. This 

sharply contrasts to other search techniques, which are based on gradient methods that tend 

to search from a local area. Another advantage is that genetic algorithms are not hindered 

by discontinuities in solutions expressed by mathematical formulas since they directly 

manipulate a string representing those formulas [49]. Genetic algorithms offer versatility 

and flexibility needed for this application since genetic algorithms deal with parameters of 

finite length. These parameters are coded using a finite alphabet. This is advantageous, 

because rather than directly manipulating the environment parameters themselves, genetic 

algorithms manipulate solutions that are represented in a finite alphabet. However, out of 
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this finite alphabet an almost infinite number of solutions can be constructed [50]. Thus, the 

search in a problem domain is unconstrained by continuity of the function in question. 

Performance, fitness of a given solution, is evaluated objectively using a given fitness 

function. This makes the search domain transparent to the algorithm and frees it from the 

constraint of having to use auxiliary or derivative information [50]. The search for a 

solution starts from many points and then evolves, in contrast with neural networks which 

tend to start from just one point and refine the search using a gradient- descent method or 

some other error reduction technique. 

 

 It is parallelism that makes genetic algorithms potent. It often insures, given enough 

generations, that the search will not become trapped in local maxima. It is important to 

make sure that genetic algorithms do not localize their search by using mutation. Some 

neural algorithms try to avoid localizing the search too much by starting the search at 

arbitrary points. However, information from previous runs is not used to enhance the 

search. The very search-like nature of genetic algorithms means that transition rules used 

by the algorithms are probabilistic, not deterministic and, hence, the chance of finding the 

optimal solution increases with each subsequent generation [46]. A distinction exists 

between the randomized operators of GAs and other methods that are simple random 

walks. The difference is that GAs use random choice to guide a highly exploitative search 

[46]. 

 

5.3.8 Main Advantages of Genetic Search  

 

5.3.8.1 Direct Manipulation of Encoded Variables 

 

 Genetic algorithms manipulate variables at the most primitive level, the genetic 

string level. Thus, genetic algorithms can optimize results by combining features of the 

highest performing strings. Since genetic algorithms deal with parameters of finite length 

(coded using a finite alphabet) rather than dealing with the direct manipulation of 

parameters, the search is not hindered by the continuity of the function under investigation 
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or the existence of a derivative [49]. Performance evaluation of a possible solution is 

investigated using payoff information.  

 

5.3.8.2 Search from a Population, Not a Single Point 

 

 A typical genetic algorithm maintains a population of solutions. Each solution starts 

at a different point in the search domain and continues from that point. The algorithm 

optimizes the solution until it reaches the maximum possible performance level within the 

allotted time. Thus, the possibility of getting trapped at local maxima is minimized. The 

likelihood of getting stuck at local maxima can be reduced even further, almost eliminated, 

if a measure of inbreeding-avoidance is incorporated into the algorithm.  

 

5.3.8.3 Search via Sampling, a Blind Search 

 

 Genetic algorithms have another advantage in that they ignore most of the 

information in a search domain except that pertaining to payoff [50]. Other search methods 

rely on external information to fine-tune their search; the external information is usually 

rules that define the behavior of the domain in question. However, not every problem 

domain is well defined or well understood, so methods that rely mainly on external 

information break down when the necessary information is not available or difficult to 

obtain. Genetic algorithms remain general by relying on information gained from the 

search space itself. 

 

5.4 Simulated Annealing 

 

 Simulated annealing is a general-purpose optimization algorithm that traces its 

origins to statistical mechanics. Kirkpatrick invented this algorithm in 1982; it is based on 

the hill-climbing method. This algorithm is straightforward as it starts from a random point 

in the search environment, but it differentiates itself from other search methods in the way 

the search is directed [77]. The search begins by choosing a random point and evaluates it 
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for fitness. If the random point selected has better performance than the starting point, then 

it is adopted unconditionally. Otherwise, it is accepted with a probability p(t) where p is the 

probability function of accepting a solution with respect to time (t). Initially p(t)’s value is 

close to 1, but as time passes it gets closer to 0. This allows the algorithm to accept almost 

all moves early in the search but to become more selective as time goes on [77]. The 

probability of accepting a negative move becomes less and less as time passes. The none-

optimal, negative moves are accepted early in the search because they help the search 

algorithm avoid local maxima.  

 

 However, simulated annealing still has some of the drawbacks of random search. In 

addition, it lacks the ability to construct a big picture of the problem domain as time passes. 

This is because information gathered from previous moves is not utilized when selecting 

new moves. Regardless of the drawbacks, simulated annealing can be quite a powerful 

search method and according to some articles, this technique has been quite successful in 

VLSI circuit layout applications [47]. The simulated annealing algorithm is shown in figure 

5.5. The term “annealing” is from metallurgy, and it refers to metals being cooled slowly or 

annealed. Metals treated in this manner have superior strength to metals that have been 

cooled rapidly or quenched. The reason behind the higher strength has to do with the 

internal molecular states of lower energy [77]. This is similar to the problem of minimizing 

a function f(x1,..., xn) where it is assumed that  f  ≥ 0  everywhere. In this case, f represents 

the energy of a statistical mechanical system that has states s = (x1,..., xn).  The probability 

that the system is in state s at temperature T is found by the Boltzmann-Gibbs distribution 

P(s) = P(x1,..., xn) = e−f(s)/kT/Z [77]. 

 

 The main point is that the Boltzmann-Gibbs distribution is dominated by the states 

of lowest energy (at low temperature) and, hence, becomes the most probable. Moreover, 

assuming that there are m states that represent the minimum of the function f, then the 

latter can be summarized in formula 5.1. 
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Formula 5.1:                lim P(s) = {1/m    if s is a ground state 
                                   T0             0   otherwise 

 

 Should there be a way to simulate the system at temperatures near 0, then that 

would result in the ground states being reached almost immediately and, hence, the 

minima of f. However, it is not that easy because these systems usually fail to reach the 

Boltzmann-Gibbs equilibrium distribution in a reasonable time. 

 

 
Figure 5.5: The Simulated Annealing Algorithm. (source: 

http://www.phy.ornl.gov/csep/CSEP/MO/NODE28A.html)  
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 This is due to the fact that movement in state space is restricted by very low 

probability regions or. Stated another way, this is due to high energy barriers. Simulated 

annealing deals with this limitation by starting the search with a high temperature where the 

Boltzmann-Gibbs distribution is essentially uniform. The temperature is slowly lowered 

using an annealing schedule that is unique to the application. Local and global minima and 

the energy states between them are shown in figure 5.6. 

 
Figure 5.6: Simulated Annealing Solutions Showing Local and Global Minima. 

 

 The annealing schedule is critical because annealing too fast will not result in close to 

optimal solution while annealing too slow will take a very long time and, therefore, will not 

be practical. A typical annealing schedule based on logarithmic annealing is shown in 

formula 5.2  

 

Formula 5.2: Typical logarithmic annealing schedule Tt = K/(log t)   where  (t ≥ 1) 

 

 The algorithm shown above is almost guaranteed to converge to one of the ground 

states. The value K is constant. The temperature is represented by T the temperature and time 
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by lower case t.  If S is a state that represents a level of energy within the system and hence 

smax and smin define two states with maximal and minimal energy, then it can be inferred 

from the Boltzmann-Gibbs distribution that: 

 
               Pt (smax)      

Formula 5.3:  ———— =  (1 / t ) (∆Ε/kK)  
               Pt (smin)     

 
 
Then the value ∆ Ε = Ε(smax) - Ε (smin ), If K= ∆ Ε/k  then that implies that 
 
Formula 5.4:  Pt (smax) = Pt(smin)/t. 
 
Hence, it follows that for any state s, 
 
Formula 5.5:  Pt (s) >= Pt (smax) = (1/t) Pt(smin) >= (1/t) Pl (smin) 
 
 
 Specifically, the total number of times that any state s is visited during the annealing 

process should have a lower bound of P1(smin) Σt 1/t (this is divergent). It follows then that 

with K scaled with respect to the highest energy barrier, it is not possible for the search 

algorithm [77] to get stuck in a local minima. Still, a logarithmic annealing schedule tends to 

be rather slow and, hence, not useful because it tends to take a very long time to converge. A 

logarithmic schedule also indicates that the algorithm is going to visit a significant number of 

all possible states making the search very similar to an exhaustive search. Hence, a 

logarithmic schedule has a good chance of finding the global optimum [77]. Most practical 

applications of these algorithms involve a set of problem classes that are typically NP 

complete with an exponential number of possible states. The latter makes any exhaustive 

search or similar algorithm impractical. In these applications, simulated annealing should be 

used with schedules that anneal faster than a logarithmic search such as a geometric 

annealing schedule that is shown in formula 5.6. 

 

Formula 5.6: Typical annealing schedule  Tt =  µ T   
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 The equation in formula 3.6 is not an optimal annealing schedule, so there is no 

guarantee that the global minima will be found; rather, an approximate optimal solution that 

corresponds to points of low energy is usually returned. It may be necessary to run the 

simulation a number of times to optima semi-optimal results. It is also useful to pair the SA 

search algorithm with another search methodology such as a genetic algorithm to increase the 

likelihood of finding a solution. 

 

5.5 Summary Comparison of Genetic Algorithm and Simulated Annealing 

 

Table 5.2 below briefly shows how genetic algorithms compare with simulated annealing 

including their bases, population control, and search guidance. 

 

Table 5.2: Comparing Genetic Algorithms with Simulated Annealing. 

Genetic Algorithms Simulated Annealing 

Based on biological principles of 

evolution 

General-purpose optimization algorithm inspired 

by statistical mechanics 

Starts searching with a set of solutions 

called a population 

Starts searching with a single solution 

A solution population is optimized by 

selecting the fittest individuals after  

each iteration 

The single solution is optimized by creating  a set 

of solutions that are mutations of the original 

solution and then selecting the best performing 

solution  

Uses a fitness function to guide search Uses a fitness function to guide search 

Stops when the maximum number of 

generations has been reached 

Stops when the annealing temperature reaches 

zero 

Random, guided search – avoids local 

maxima by maintaining a large 

population 

Random, guided search – avoids local maxima 

by making probabilistic jumps within the search 

space 
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5.6 Control Function Generation  

 

 The algorithm generates a set of functions that are able to duplicate the Fuzzy 

Controller’s helicopter control signals when given the flight time as input. Hence, the 

output of the search algorithm is a set of mathematical equations composed of 

mathematical building blocks. The GA/SA search algorithm takes the data set for each 

maneuver and derives a corresponding VTOL control equation by combining 

mathematical primitives into an equation. The fitness function guides the search since the 

GA/SA algorithm favors solutions with better fitness values. Each equation is capable of 

duplicating one helicopter control signal over the entire flight time for a given maneuver. 

The functions are optimized by the GA/SA search algorithm so that they duplicate, as 

closely as possible, the Fuzzy Controller’s output values. We propose that carefully 

selected mathematical building-block(s) combined by a genetic and simulated annealing 

search based algorithm like the one presented in this dissertation can effectively mimic 

commands issued by the Fuzzy Controller and without needing positioning information 

or set points. The level of desired accuracy of the generated function can be selected by 

the tester. Hence, the search algorithm is able to generate functions that achieve more 

accurate signals. However, the tradeoff is function complexity. The mathematical 

building block is selected after analyzing the input table. The output of the GA/SA 

algorithm will be four control functions per maneuver (one function per control signal). 

Figures 5.7 and 5.8 summarize the control signals sent to the helicopter and the sensor 

readings received from the helicopter as the fuzzy logic controller executes each flight 

maneuver using set point data. Note that the sensor readings are used in the testing phase. 

 

5.6.1 Control Function Accuracy  

 

 The algorithm searches for a formula from a set of mathematical primitives [19, 52, 

53, 54, 55]. The generated function  f’(x) is derived by the GA/SA algorithm. The 

simulation is re-run if needed. The goal is an overall accuracy of around E-12 or better. 

This higher accuracy is needed due to the sensitive nature of the MATLAB model. Open-
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loop flight means that even though the control signals are duplicated, the flight conditions 

are not exactly identical. Since the Fuzzy Controller flies in closed loop, this is not an issue. 

However, for an open loop controller, errors can build up; this is part of the reason that 

accuracy had to be high.  

 

5.6.2 Control Functions and Corresponding Functions 

 

The input parameters to the algorithm will be the set of four control signals:  

 

(1) The collective signal which controls the angle of the rotor blades; this allows the pilot 

to control the amount of lift. 

(2) The lateral signal (cycle) which controls the pitch angle of the helicopter. 

(3) The longitudinal signal (cycle) which controls the roll angle of the helicopter. 

(4) The pedal signal which determines the amount of yaw angle. 

 

 Note that an actual helicopter is more complex than the MATLAB model, as the 

throttle control was not used in the model; however, for the purposes of this dissertation, 

the four control signals make up the basis of almost any helicopter design and are the 

main signals considered in this study. For each observed control signal f(x), the GA/SA 

algorithm generates a corresponding control function f’(x) that can be compared to the 

original function during the GA/SA search; each of the 4 test maneuvers contains four 

control functions f1(x), f2(x), f3(x) and f4(x) where:  

 

f1(x) = collective control signal (collective) 

f2(x) = lateral control signal (lateral) 

f3(x) = longitudinal control signal (longitudinal) 

f4(x) = pedal control signal (pedal) 

 

The GA/SA search algorithm generates the following corresponding functions: 
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f1’(x) = GA/SA derived collective control signal (collective) 

f2’(x) = GA/SA derived lateral control signal (lateral) 

f3’(x) = GA/SA derived longitudinal control signal (longitudinal) 

f4’(x) = GA/SA derived pedal control signal (pedal) 

 

5.6.3 Function Testing Parameters 

 

 The generated control function testing parameters consist of the position 

information of the helicopter. This data is used to create a “base line” that shows the path 

of the fuzzy logic controller in the x, y, and z axis. Subsequent simulations using the 

generated control equations also generate path data, and these are used to show the path 

taken by the GA/SA control equations. In the testing phase, the GA/SA generated 

formulas are given control of the helicopter as illustrated in figure 5.9.  

 

 
Figure 5.7: Helicopter Control Parameters. 
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Figure 5.8 Helicopter Sensor Readings. 

 

5.7 Data Collection  

 

   A sample table of paired input/output observed data for each control signal to the 

helicopter is shown in table 5.3. Each row represents 0.5 of a second elapsed time; this is 

one possible sampling interval. The sampling interval is a parameter chosen to sample the 

data from the controller flying the helicopter and may vary from 1 to 1000 samples per 

second. The fuzzy logic controller running in MATLAB adjusts its output 1000 times per 

second. However, a sampling time of 1 to 2 samples per second was found to be ample.  

 

 Each observed control signal is captured in an Excel file format. The file has 9 

columns: five are sensor readings, and four are control signals. There are about 12,000 

rows in each file. Each file represents a complete maneuver, and there are a total of four 

Excel files that represent captured data from a run. Table 5.3 shows a sample Excel file.  
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Table 5.3: A Sample Input Table that is used by the Search Algorithm to Derive 
Control Equations. The Shaded Area Represents Input Values to the Pilot. 

t xe ye ze yaw Lat lon ped col 
0 0 0 0 0 0 0 0 0 

0.5 0 0 1 0 1.78E-39 -3.64E-39 4.03E-24 2.38E-22 
1.0 0 0 2 0 2.23E-33 -3.15E-33 6.99E-18 1.85E-16 
1.5 0 0 3 0 4.39E-30 -7.76E-30 1.93E-14 3.62E-13 
2.0 0 0 4 0 8.94E-28 -1.65E-27 4.11E-12 6.29E-11 
2.5 0 0 5 0 5.18E-26 -9.01E-26 2.19E-10 2.92E-09 
3.0 0 0 6 0 1.29E-24 -2.05E-24 4.94E-09 5.93E-08 
3.5 0 0 7 0 1.74E-23 -2.54E-23 6.16E-08 6.77E-07 
4.0 0 0 8 0 1.48E-22 -2.01E-22 4.97E-07 5.08E-06 
4.5 0 0 9 0 8.76E-22 -1.12E-21 2.88E-06 2.75E-05 
5.0 0 0 10 0 3.87E-21 -4.76E-21 1.28E-05 0.00012 
5.5 0 0 10 4.5 1.34E-20 -1.60E-20 4.57E-05 0.00039 
6 0 0 10 9 3.75E-20 -4.40E-20 0.00014 0.00109 

 
 

 
Figure 5.9: Diagram Showing Control Equations Flying the Helicopter. 
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5.8 Mathematical Definition of a Function 

 

 Mathematically, a function is described as a relation where each element of a set 

is associated with a unique element of another set [101]. In this dissertation, the terms 

function, mapping, and transformation will be used interchangeably. The set of input 

values, x1 x2..xn, shall represent the domain of f, and the set of the actual corresponding 

output value, y, shall represent the range of f. Hence, {f(x1,x2, .., xn) = y : where the 

variables x1, x2.. xn are in the domain of f and y is in the range of f}. A function is named 

after its range; real functions and complex functions are named as such due to the 

numerical properties of the their range. In this application, the domain is represented by a 

single input real value that changes with time. The range is the single output real value. 

Hence, x1 represents the input to the control equation of the helicopter, and y is the 

resulting output control signal in response to this input.  

 

 More formally, the data consists of paired input/output set. Let all the input values 

be represented as vector S, while their corresponding output values are represented as 

vector T. Hence, each input vector S must have a corresponding output vector T. The 

vectors represent the observed values collected from the system starting with the time a 

given maneuver is initialized and ending when the maneuver has been completed. The 

result is that each maneuver has a paired S and T vectors for each control signal.  

 

 The algorithm then generates a function F that takes as input the set of S vectors (S1, S2 

S3, … , Sn) in a given ‘observed ‘ set and produces a set of Tc output vectors (where Tc 

represents the calculated version of vector T). Hence, Tc is an estimate of T calculated by 

the derived function F such that the output of the function F is (Tc1, Tc2, Tc3, … , Tcn) 

where: Tcij = Fj(Si()) where: 1  <=  j  <=  n. and n is the size of T.  

 

 The algorithm compares the set of calculated T vectors (Tc) to the set of T vectors 

that were observed when the data was collected. The average error rate e is calculated for 

each row in T as shown in formula 5.7; the error rate will be later modified to become the 
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fitness function. This process is repeated for every function F generated. The algorithm 

would then select the F function(s) with the lowest error level and continue evolving a 

solution until F is within the pre-determined error level or the maximum number of 

generations/annealing time has been reached.  

 

Formula 5.7: Error rate calculation e  = ( abs [ T(i) –  Tc(i)] | / T(i)) * 100  
 

5.9 Selecting Mathematical Primitives and Assembling Formulas 

 

 The mathematical primitives selected must be chosen carefully so that the derived 

solution is as optimal as possible. The “building block” function chosen for this 

application was constructed based on analysis of the collected data and the corresponding 

data graphs. The building block includes variables that allow for the configuration of the 

mathematical primitives to change their response as needed. For example, the sine 

function was selected as one of the mathematical primitives to be used in constructing a 

function building block. This function was modified to allow the search algorithm to 

control the frequency, the altitude, and the starting and ending points of the basic sin 

function. The start and end points are essentially range parameters that switch the 

function on and off such that the function is active within a selected input value range. 

Note that outside that range its value becomes 0. The control parameters are variables 

that are manipulated by the search algorithm. 

 

5.9.1 Assembling Formulas 

 

 Assembling the mathematical primitives into functions can be done in many 

ways. A format for assembling the final function was chosen because it offered 

flexibility. A template was developed that allows the algorithm to combine each building 

block with other building blocks according to a pre-determined pattern. Note: this method 

of learning may be classified as a supervised regression learning approach that uses batch 

data [100]. 
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5.9.2 Selecting Operators and Encoding Genes  

 

 The application of these operators to the vector S of input variables transforms these 

variables into a resulting calculated value in the range of f’(x). This resulting function, also 

known as the generated function, is compared with the original output values in the range 

of f(x) stored in the corresponding result set T. Hence, for some pair Si():Tij, the error 

value is calculated by comparing each calculated value with its corresponding actual value 

using the error function. The resulting error value is a percentage that shows the output 

deviation of the generated function in relationship to what the expected output value should 

be. The returned error value is referred to as the fitness of the function. The lower the error 

value, the better the overall fit of the generated function. The effectiveness of a solution is 

dependent on the power of the mathematical “building blocks” and the encoding of the 

search variables into a genome that can be manipulated by the search algorithm.  

 

5.9.3 Performance Criterion 

 

 The fitness function or performance measure will be based on the goodness of the 

fit of the solutions produced by the algorithm. The method selected for this task is a 

variation of Mean Average Population Error (MAPE). The fitness function that was used 

for each control signal is shown in formula 5.8. The values produced by the derived 

function f’(x) are then compared with the values produced by the fuzzy logic controller 

represented by f(x) and a fitness value is generated that shows the average fitness over the 

entire range.  

                                s 

Formula 5.8: fitness function  = [ ∑   (| f(xn) –  f’(xn) | / f(xn )) * 100 ] /s 
                                       n=0                                 
where; 

s    number of input rows in the data,  

f(x)    expected value of the control signal with input x 

f’(x)      actual control signal produced by the generated function with input x 
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 The above fitness function shows the error rate over the whole data range. When 

the algorithm is searching for a solution, it is minimizing the value of f since lower values 

represent better function performance. The fitness function calculates the absolute 

difference between the value calculated by the GA/SA generated function (y’) and the 

expected value y, which is also known as the observed value. The difference is then 

divided by the expected value y to determine error. The result is multiplied by 100 to get 

the percentage error. 

 

5.10 The Solution Form  

 

 The algorithm generates a control signal function F(x) which is the combination of 

many sub-functions; these sub- functions (building blocks) are connected by a combination 

operator c. The set of possible values for the combination operator are: 

 

Combination operator = c  =  {+, -} 

 

The general form of the generated solution F(x) becomes: 

 

F(x) = (Building Block 1) (combination) (Building Block 2) (combination) … (Building 

Block n)  

 

 Where each ‘Building Block’ parameter is a stand-alone mathematical function 

with a set of values that can be adjusted as needed by the GA/SA search algorithm. The 

goal of combination operator is to add or subtract one mathematical “Building Block” 

function to the next. The resulting function, F(x), is then evaluated; its output is compared 

with the observed outputs to determine the mapping error. Each building block also has two 

control variables that outline a sub-range R on the input set; the two variables allow the 

building block to return an equation when the input variables fall within the range R; 

otherwise the Building Block returns a 0. This allows each Building Block to be active 

within a specific range R of inputs and then return 0 or some other desirable value outside 
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that range. These variables allow the building block to have an internal switch that can be 

turned on or off within a specific range. The two variables are “start point” and “range” 

respectively.   

 

More specifically, the way the range control is implemented within each building block is 

as follows: 

 

if (start_value < input_value < (start_value + range)) 

   return f1(input_value); 

else 

   return 0; 

 

 The function f1 can be any function and can be modified as needed. However, in 

this implementation, f1 is a formula that is designed to map an arbitrary number of points. 

The function can be adjusted as needed by the GA/SA search algorithm based on its control 

variables. The variable “input_value” represents flight-time. The start value and range 

operators are used to limit the range of f1 and are also controlled by the GA/SA search 

algorithm. The function f1 is composed of the sum of an oscillating sine function y(t) that 

can be used to map one or more points in space and a line function (mx + b), which can 

map two or more points. The combination of these two functions can be used to map many 

points. Figure 5.10 shows an instance of the two functions y(t) and (mx + b).  Figure 5.11 

shows what happens when the start_value and range parameters are applied. Hence, f1 = 

y(t) + (mx + b).   
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Figure 5.10: Two Functions Make Up f1, y(t) is a Function that Peaks at One Point in 

the Range of f1 and the Line Function (mx + b) 
 

 

 Consider the basic oscillating function s(t) = sin (wt+r), where t is the input_value 

from the observed data set; this value can be time or another input signal that changes with 

time. The variable w (omega) is the frequency parameter or angular velocity, which is also 

a variable controlled by the search algorithm. The larger omega becomes, the higher the 

frequency of s(t). The variable r is the offset or phase shift variable which indicates the 

start value of s(t) at time t = 0 (another variable controlled by the search algorithm). The 

variable r allows the GA/SA search algorithm to ‘fine tune’ the response in relation to the 

input. 
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Figure 5.11: The Same Two Functions Within f1 but with Range Control Implemented 
that Makes their Value 0 to the Left of start_value and 0  to the Right of (start_value + 

range). 
   

 Let u(t) be a sine function that can be positive in one or more locations (depending 

on w) on its range. Hence, u(t) can be positive at some point p1 of the input set. Using a 

modified version of s(t) and then subtracting a value close to 1, causes u(t) to be negative 

for most of its range. The function u(t) is shown in formula 5.9, while figure 5.12 shows a 

graph of u(t). 

 

Formula 5.9:  u(t) = sin( input_value * w + r) -0.999   

 

 The next two functions are derived using a combination of u(t), s(t), and the 

absolute value function (abs). These two functions are v(t) and w(t).  

 

 Let v(t) be a function that is positive or zero for all values on its range with point p1  

being the a small positive value on its range as shown by formula 5.10. 
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Figure 5.12: Diagram Showing u(t). 
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Figure 5.13:  Diagram Showing v(t) and w(t). 
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 Let w(t) be a function that is negative for all values on its range except for point p1 

where it is positive as shown by formula 5.11. A graph showing v(t) and w(t) is shown in 

figure 5.13, while figure 5.14 shows u(t), v(t), and w(t).. 

 

Formula 5.10:  v(t) = abs [ s(t) * u(t) ] 

Formula 5.11:  w(t)  = abs [ s(t) ] * u(t)    

 

 Adding v(t) to w(t)  to create function y(t) will produce 0 for the entire range of y(t) 

except at the point p1 where the value will be positive. The function u(t) controls how 

many positive points, similar to p1, occur on the range of y(t). The variable w controls the 

frequency of y(t), while the variable r specifies the location of p1 on the range of y(t). The 

function y(t)  is shown in formula 5.12. Figure 5.15 shows the function y(t) along with 

point p1 peaking in the middle of the graph while the rest of y(t) shows no response. 

 

Formula 5.12:  y(t) = v(t) + w(t);   
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Figure 5.14: Diagram Showing u(t), v(t) and w(t). 
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Figure 5.15: Diagram Showing the Resulting Function y(t). 
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Figure 5.16: Diagram Showing how y(t) is Generated at Point p1. 

 

 Figure 5.16 shows how the functions u(t), v(t), w(t) interact to produce y(t). The 

resulting function y(t) produces a small positive value. In order to control the magnitude of 

y(t), it is multiplied by the variable x. The function y(t) is then combined with the equation 

of the line to produce the final form of the function that will be manipulated by the GA/SA 

search algorithm; the new function g(t) is shown in formula 5.13 below. 

 

Formula 5.13: The final solution form is g(t) = x * y(t) + mt + b; 

 

Where x controls the magnitude of  y(t) and mt + b is the equation of the line.  

 

 The algorithm keeps track of all values associated with function g(x) in a values 

array that holds six values, so the above solution becomes: 
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g(x)   =   Operation Result     =    values[3] *  y(t) +  

                                    values[4] *  y1(t)   +  

                                    values[5] * input[0]  +  values[6]; 

 

     There is one g(x) function and one value data array per Building Block; the value 

data array can hold six real values. The first two values (values[1] and values[2]) 

correspond to start value and range value respectively, and these are range control values. 

The first value is the start of the range, and the second is the length of the range interval. 

The rest are used as values to control the behavior of the function g(x) within the Building 

Block. The values array has the format: 

 

values[ ] = {value1, value2, value3, …, value6} 
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Figure 5.17: Diagram Showing u(t), v(t)and w(t) Generated at Multiple Points. 

 

 Figure 5.17 shows the resulting positive points when omega is increased in u(t) 

which affects v(t) and w(t). The latter results in y(t) peaking at more than one point across 
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its range as shown in figure 5.18. These peaks allow for the mapping of multiple points at 

the same time. However, accuracy may be decreased as one or more points will not be an 

exact fit. On the other hand, fewer functions are needed create a mapping. Hence, 

generating a resulting function is a tradeoff between accuracy and number of building 

block functions used. 
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Figure 5.18: Diagram Showing Multiple Points on y(t). 

 

 The search algorithm starts with one building block and appends to it as the 

search runs. In the case of more than one building block type, the search algorithm can 

select different Building Blocks that contain different f functions. However, in this 

application, there is only one type of building block. The search algorithm also 

manipulates the values array in search of the configuration that has the least error. The 

search within all the possible combinations of the above operators to find the best 

combination, that when applied to the input values in S, yields a calculated value that has 

as little error as possible when compared to the actual desired value. If the algorithm were 

to search every combination, then the problem would be unmanageable for large input 

sets. 
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5.10.1 Assembling Building Blocks That Do Not Need Range Control 

 

 A building block may also be built using no range control by selecting the 

parameters so that the function itself is 0 across its range except one or more locations. 

These (positive) locations can be ‘selected’ by controlling the frequency parameter w.  

 

Lon Signal
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Figure 5.19: Sample Longitudinal Control Signal. 

 

 Figure 5.19 shows a sample longitudinal control signal. This signal can be 

mapped by having a collection of building blocks each mapping a portion of it. In figure 

5.20, the same longitudinal control signal is shown along with 5 functions mapping a part 

of the signal. These 5 functions all have the same structure but they have different values 

for their parameters allowing them to be ‘active’ or non-zero for a specific interval on 

their range.   

 

Let: u(t) = sin (w t + r) - d  (where d < 1, around 0.9 to 0.999999 ) 

Let: f(t) = u(t) + ABS(u(t))   
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Adding u(t) to the absolute value of itself makes f(t) 0 except at points where the value of 

u(t) is positive. The positive areas of the range of u(t) will double their value in f(t) 

resulting in ‘peaks’ similar to the ones in figure 5.18. The variable d controls the ‘span’ f 

the positive portion of f(t). The smaller the value of d the wider the positive areas of f(t) 

will be. 

 

Adding a multiplier to control the magnitude of  f(t):  

f(t) =  m * [ u(x) + ABS(u(x)) ] 

 

Again, the following variables control the function and are manipulated by the GA/SA 

search algorithm: 

 w  controls the frequency of f(t) > 0 over its range. 

 r  controls where this positive value appears on the range. 

 d  controls the ‘span’ of the value. 

 m  controls the magnitude of the value.  
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Figure 5.20: A Longitudinal Signal being Mapped by 5 Building Block Functions. 

 

 The function f(t) is a single building block. The actual control function for a 

signal F has many building block functions each with a unique set of control variables as 

selected by the GA/SA search algorithm.  

 

Let: F(t) = f1(t) + f2(t) + f3(t) +  ... + fn(t)    

 

Where n is the number of building blocks needed to map the signal. 

 

5.10.2 Constraints, Parameters and Assumptions 

  

 In order to make the scope of the problem more manageable, constraints were 

placed as follows: (1) The algorithm needs to learn a finite set of maneuvers. (2) The 
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GA/SA search algorithm must be able to derive control functions in a reasonable time 

period (a subjective value). The other variables that control the GA/SA search such as 

population size and Markov chain length are to be set to values that yield the best results 

through experimentation not to exceed 1,000 respectively. The disadvantages of the 

proposed method are related to the fact that simulated annealing and genetic search are 

not perfect, and there are disadvantages in using them. Mainly, these search methods are 

also not always efficient, and there is no guarantee of convergence within a given time. 

However, unlike gradient search, they are unlikely to get stuck in local maxima.  

 

5.11 Running a Simulation 

 

 Simulations are run starting at low values (50,000 generations) or a starting 

temperature of 50,000. The value of generations/temperature is then incremented by 

20,000 until an optimal (E -12 % accuracy) is found or until the pre-selected limit value 

of approximately 300,000 per iteration is reached. If no optimal solution is found at a 

generation/temperature value of 200,000, then the resulting formulas are analyzed to 

determine a possible cause for their lack of convergence.  Based on this analysis, the 

mathematical primitives set is then updated and the search cycle starts over with a low 

value of 50,000. In case an optimal solution is found, the function is saved and the search 

ends.  

 

5.12 Testing Methodology  

 

 Once results are ready, their performance must be compared to that of the fuzzy 

logic controller that generated the original flight path. The data from the resulting 

equations are entered into MATLAB and a simulation is run essentially allowing the 

functions to control the helicopter. The resulting flight path is then calculated and 

graphed along the original set points. The graph has path data of the Fuzzy logic 

controller as well as other controllers. 
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5.12.1 Test Goals 

 

The testing phase is concerned with answering two main questions: 

 

(1) A “static” test whereby the resulting values from the generated control equations are 

compared with the values in the observed data table. This test is a part of the derivation 

process. As the GA/SA searches, it is constantly performing a static test to determine the 

fitness of the formula. Hence, the goal is to map functions that fit the test data with an 

accuracy of E-12% or better. 

 

(2) A “real-time” test where the generated formulas are given control of the VTOL. The 

resulting path is compared with the set-points (the desired path) and the path of other 

controllers executing the same maneuver. Hence, the ability of the generated functions to 

follow the flight path correctly when given control of the VTOL is tested. The functions 

are graphed to see how well the response curve generated by the new function f’(x) 

matched up against the desired control signal f(x).  

 

5.13 Implementation Platform  

 

 The platform used in deriving the control equations is the Tomcat Java Server on 

which a program using Java Server Pages (jsp) was written. The programs were all 

implemented in Java in the form of jsp files. All simulations were run within Windows 

Explorer. The current simulation time runs anywhere form 9 to 12 hours depending on the 

number of rows in the input sample and other environmental variables such as the number 

of Building Blocks used. Figure 5.21 shows a simulation run inside Windows Explorer 

with the following areas being of interest: 

 The current temperature. 

 The current operation (op) set. 

 The current combination set. 

 For each op value, there is a corresponding value array. 
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 The current performance. 

 The output values–these can be graphed. 

 

 
Figure 5.21:  The u(x) Function being Derived from the Longitudinal (lon) Control 

Signal. 
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CHAPTER 6 

 

EXPERIMENTAL RESULTS 

 

6.1 Testing Summary  

 

 The generated GA/SA formulas are tested for fitness or goodness of fit. The 

closer the overall fit of the generated function to the original signal, the better the 

solution. The second step involves loading the data into the MATLAB helicopter model 

and allowing the control equations to fly the helicopter. The results for both test steps are 

recorded and tabulated in the following sections. 

 

6.1.1 Summary of Static Test Results   

 

 Table 6.1 shows all 16 generated control signals (four for each maneuver) along 

with their approximate fitness values. Simulation run times were around 12 hours on a 

dual core 2.2 GHz AMD processor. The next four graphs (Figures 6.1 through 6.4) show 

the original fuzzy controller signal compared with the signal of the GA/SA generated 

function for a “take-off and u-turn” maneuver. The graphs show the four derived control 

signals over the flight time compared with the actual output of the fuzzy controller.  
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Table 6.1: Summary of Test Results. 

Flight Maneuver Control Signal f’(x) Mapping Accuracy % 

(1) Figure 8 in flight Longitudinal 1.52184 x 10-13  

  Lateral 9.07987 x 10-14  

  Collective 3.51163 x 10-13  

  Pedal  6.29430 x 10-13 

(2) Takeoff and U-Turn  Longitudinal 9.17765 x 10-14 

  Lateral 3.11450 x 10-13 

  Collective 2.82027 x 10-13 

  Pedal  9.51773 x 10-13 

(3) Ascending Spiral Longitudinal 3.38715 x 10-13 

  Lateral 1.57193 x 10-14 

  Collective 8.8501 x 10-14 

  Pedal  1.50658 x 10-14 

(4) Figure 8, changing 

height 

Longitudinal 2.23580 x 10-10 

  Lateral 5.33174 x 10-14 

  Collective 8.90410 x 10-13 

  Pedal  1.57193 x 10-14 
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Figure 6.1: Collective Signal Mapping Accuracy is E-12 or Better. Note that the Blue 

Line is Indiscernible from the Pink Line Due to the High Mapping Accuracy. 
 

-0.002000000000000
000000000000

0.000000000000000
000000000000

0.002000000000000
000000000000

0.004000000000000
000000000000

0.006000000000000
000000000000

0.008000000000000
000000000000

0.010000000000000
000000000000

0.012000000000000
000000000000

0.014000000000000
000000000000

1 21 41 61 81 101 121 141 161 181 201

Series1
Series2

 
Figure 6.2: Lateral Signal Mapping Accuracy is E-12 or Better. 
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Figure 6.3: Longitudinal Signal Mapping Accuracy is E-12 or Better. 
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Figure 6.4: Pedal Signal Mapping Accuracy is E-12 or Better. 
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 It is important to note that the predicted value starts with a large error and then as 

the annealing temperature approaches zero, the generated function gets better at 

approximating the output signal. The annealing temperature used in the run that 

generated the graphs started at 90000. The same holds in the genetic algorithm based 

search, the error is large at the start of the search and then decreases as the number of 

generations increase.    

 

A sample solution is shown below: 

 

g(x) = -7.808822922194903 * ( Math.abs(Math.sin(-14.739860223124678 * 84.0 + -

3.8552882647706337) * Math.sin(values[3] * input[0] + values[4]) - values[17] ) + 

Math.abs(Math.sin(-14.739860223124678 * 84.0 + -3.8552882647706337)) * 

Math.sin(values[3] * input[0] + values[4]) - values[17] ) + -2.7234666674927006E-13 * 

( Math.abs(Math.sin(18.162399204037563 * 84.0 + 1.1859891106685911) * 

Math.sin(values[7] * input[0] + values[8]) - values[15] ) + 

ath.abs(Math.sin(18.162399204037563 * 84.0 + 1.1859891106685911)) * 

Math.sin(values[7] * input[0] + values[8]) - values[15]) + 4.082428387314575E-4 * 

84.0 + -0.01893125338865113 + 0.0 -9.256986097378053E-9 * ( 

Math.abs(Math.sin(2.331363503902123 * 2.4 + -0.31857784396828004) * 

Math.sin(values[3] * input[0] + values[4]) - values[17] ) + 

ath.abs(Math.sin(2.331363503902123 * 2.4 + -0.31857784396828004)) * 

Math.sin(values[3] * input[0] + values[4]) - values[17] ) + -2.960800703770896E-7 * ( 

Math.abs(Math.sin(-9.06226053214201 * 2.4 + 1.214464920141008E-4) * 

Math.sin(values[7] * input[0] + values[8]) - values[15] ) + Math.abs(Math.sin(-

9.06226053214201 * 2.4 + 1.214464920141008E-4)) * Math.sin(values[7] * input[0] + 

values[8]) - values[15]) + -1.0750681422502352E-14 * 2.4 + -1.0991822929979367E-

15 + 0.0 + 0.09836145446757635 * ( Math.abs(Math.sin(1.0923894221893784 * 4.8 + 

3.4040567600035927) * Math.sin(values[3] * input[0] + values[4]) - values[17] ) + 

ath.abs(Math.sin(1.0923894221893784 * 4.8 + 3.4040567600035927)) * 

Math.sin(values[3] * input[0] + values[4]) - values[17] ) + 8.973723301401056E-5 * ( 
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Math.abs(Math.sin(-25.979710813021498 * 4.8 + 0.03716609615194822) * 

Math.sin(values[7] * input[0] + values[8]) - values[15] ) + Math.abs(Math.sin(-

25.979710813021498 * 4.8 + 0.03716609615194822)) * Math.sin(values[7] * input[0] + 

values[8]) - values[15]) + 4.4140232393466586E-5 * 4.8 + 1.1684463372896668E-5 

 

 6.2 Summary of Dynamic Test Results 

 

 In this section, the equations are loaded into the MATLAB model of the virtual 

helicopter. The equations are then given control of the helicopter to determine how well 

they can follow the fuzzy logic controller’s path. The only input provided to the 

equations is flight time. The next sections summarize each maneuver and the results 

associated with that maneuver, organized one section per maneuver. For each of the four 

maneuvers, the helicopter was first flown using the fuzzy logic controller with its 

feedback intact (closed-loop). The helicopter is then flown using the fuzzy logic 

controller in open-loop mode. The resulting path data of the fuzzy logic controller for 

both the open-loop and closed-loop modes are shown in a graph. The graph compares the 

closed-loop (pink) vs. the open-loop mode (blue) flight path. This is done to show the 

difference between closed-loop and open-loop operation for each maneuver. The fuzzy 

logic controller is operated in open-loop in order to collect control signal data that can be 

used to derive control equations. Note that the GA/SA algorithm derives formulas that 

will operate in open-loop mode. Hence, collecting data should be done from an open-loop 

fuzzy logic controller.   

 

 Next, the derived equations are given control of the helicopter model and the 

resulting path is compared with the fuzzy-logic controller path (open-loop mode). The 

resulting path is also shown for each axis the graphs that follow. Lastly, the flight path of 

the derived equations, the fuzzy logic controller (open-loop mode), other controllers and 

the set-points are all shown together in one graph. 
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6.2.1 Figure-8 Maneuver   

 

 This maneuver requires the VTOL to perform a figure-8 in flight. Figure 6.5 

shows the open-loop/closed-loop paths. Note that when the fuzzy logic controller is 

placed in open-loop, it becomes unable to complete the whole maneuver as can be seen in 

the figure below. This is due to the feedback circuit being disconnected. Throughout 

testing, it was noted that the VTOL was more sensitive to some maneuvers when placed 

in open-loop mode. Some of the maneuvers exhibit large errors in the flight path towards 

the end. Meanwhile, other maneuvers seem to run well regardless of the open-loop or 

closed loop status of the controller. As such, different maneuver and helicopter models 

will likely respond differently to the proposed approach; that of flying the VTOL in open 

loop.  
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Figure 6.5:  Figure-8 (in flight loop) Closed Mode and Open Mode; Showing. x, y ,z  

vs. Time Plot, with Blue being the Fuzzy-logic Controller (open-mode)  Path and Pink 
being the Fuzzy-logic Controller (closed-mode)  Path. 

 

6.2.2 Figure-8 Maneuver Testing Results 

 

 The figure-8 maneuvers are shown again below. The graph in figure 6.6 compares 

the GA/SA based control formula flight path with that of the fuzzy logic controller (open 

mode) flight path. The same results are shown one axis at a time in figures (6.7), (6.8), 

and (6.9) respectively. 
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Figure 6.6:  Figure-8, GA/SA Path and Fuzzy Logic Controller Path; Showing x, y, z 

vs. Time Plot, with Blue being the Fuzzy-logic Controller Path and Pink being the Path 
Generated by the Derived Equations.  
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Figure 6.7:  Figure-8, x vs. Time Plot; with Blue being the Fuzzy-logic Controller Path 

and Pink being the Path Generated by the Derived Equations.  
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Figure 6.8:  Figure-8, y vs. Time Plot; with Blue being the Fuzzy-logic Controller Path 

and Pink being the Path Generated by the Derived Equations.  
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Figure 6.9:  Figure-8, z vs. Time Plot with Blue being the Fuzzy-logic Controller Path 

and Pink being the Path Generated by the Derived Equations. 
 

 

 Once the flight path for the figure-8 in flight maneuver is completed, it is then 

compared with the set-points path (the desired path), a PID Velocity Tracking controller, 

a PID Position Tracking controller, a Model Predictive Control (MPC) Position Tracking 

controller, the GA/SA derived equations path, and the fuzzy logic controller path which 

was the basis for the derived equations. Figure 6.10 shows the flight paths of all the 

controllers running a figure-8 within MATLAB. The results show that this maneuver was 

difficult for some controllers, such as the PID Velocity tracking controller, to follow. The 

GA/SA controller, running in open-loop, seems to follow the set-points reasonably well. 
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Figure 6.10:  Figure-8, Showing the GA/SA Derived Controller Compared to other 

Controllers Flying the Same Model/Set-points in MATLAB.  
 

 

6.2.3 U-Turn Maneuver   

 

 This maneuver requires the VTOL to make a u-turn in flight. Figure 6.11 shows 

the open loop/closed loop paths. In this maneuver, the open-loop and closed loop flight 
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paths were close. Note that the fuzzy-logic controller is not affected by open-loop 

significantly. 

 

 
Figure 6.11:  U-turn (in flight) Closed Mode and Open Mode; Showing x, y, z  vs. Time 
Plot, with Blue being the Fuzzy-logic Controller (open-mode) Path and Pink being the 

Fuzzy-logic Controller (closed-mode)  Path. 
 

6.2.4 U-Turn Maneuver Testing Results 

 

 The comparison of the fuzzy logic controller’s open-mode path and the GA/SA 

derived control equation’s flight path is shown in figure (6.12). The same results are 

shown one axis at a time in figures (6.13), (6.14) and (6.15) respectively. 
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Figure 6.12: U-turn, GA/SA Path and Fuzzy Logic Controller Path; Showing x, y, z vs. 

Time Plot, with Blue being the Fuzzy-logic Controller Path and Pink being the Path 
Generated by the Derived Equations. 
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Figure 6.13: U-turn, x vs. Time Plot; with Blue being the Fuzzy-logic Controller Path 

and Pink being the Path Generated by the Derived Equations. 
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Figure 6.14: U-turn, y vs. Time Plot; with Blue being the Fuzzy-logic Controller Path 

and Pink being the Path Generated by the Derived Equations. 
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Figure 6.15:  U-turn, z vs. Time Plot; with Blue being the Fuzzy-logic Controller Path 

and Pink being the Path Generated by the Derived Equations. 
 

 Again, the u-turn flight path is compared with the set-points path, a PID Velocity 

Tracking controller, a PID Position Tracking controller, a MPC Position Tracking 

controller, the GA/SA controller path, and the fuzzy logic controller path. Figure 6.16 

shows the flight paths of all the controllers running within MATLAB. Note that all 

controllers seem to be able to follow the set-points very well. In this case, open-loop or 

closed-loop control seems to make little difference in accuracy.  
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Figure: 6.16 U-turn, Showing the GA/SA Derived Controller Compared to Other 

Controllers Flying the Same Model/Set-points in MATLAB.  
 

 

6.2.5 Ascending Spiral  

 

 This maneuver requires the VTOL to spiral up. Figure 6.17 shows the open- 

loop/closed-loop paths. In this maneuver, the open-loop and closed-loop flight paths were 

different as can be seen in the figure below.  Note that the fuzzy-logic controller does not 
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match the closed-loop mode version of the spiral maneuver perfectly, this is due to it 

being in open-loop mode. 

 

 
Figure 6.17: Ascending Spiral Maneuver Closed Mode and Open Mode; Showing x, y, 
z vs. Time Plot, with Blue being the Fuzzy-logic Controller (open-mode) Path and Pink 

being the Fuzzy-logic Controller (closed-mode) Path. 
 

6.2.6 Ascending Spiral Testing Results  

 

 The comparison of the open-loop model path and the GA/SA derived control 

equation’s path is shown in figure (6.18). The same results are shown one axis at a time 

in figures (6.19), (6.20), and (6.21) respectively.  
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Figure 6.18:  Ascending Spiral, GA/SA Path and  

 Fuzzy Logic Controller Path; with Blue being the Fuzzy-logic Controller Path 
and Pink being the Path Generated by the Derived Equations. 
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Figure 6.19: Ascending Spiral, x vs. Time Plot; with Blue being the Fuzzy-logic 
Controller Path and Pink being the Path Generated by the Derived Equations.  
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Figure 6.20: Ascending spiral, y vs. Time Plot with Blue being the Fuzzy-logic 
Controller Path and Pink being the Path Generated by the Derived Equations.  
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Figure 6.21:  Ascending Spiral, z vs. Time Plot; with Blue being the Fuzzy-logic 
Controller Path and Pink being the Path Generated by the Derived Equations.  

 
 The spiral up maneuver flight path is compared with the set-points, a PID 

Velocity Tracking controller, a PID Position Tracking controller, a MPC Position 

Tracking controller, a GA/SA derived equation controller path, and the fuzzy logic 

controller’s path. Figure 6.22 shows the flight paths of all the controllers running within 

MATLAB. Note that all controllers seem to have difficulty following the set-points 

exactly even though the other controllers are flying in closed-loop. 
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Figure 6.22:  Ascending Spiral Showing the GA/SA Derived Controller Compared to 

other Controllers Flying the Same Model/Set-points in MATLAB.  
 

6.2.7 Variable Height Figure-8 Maneuver 

 

 This maneuver requires the VTOL to make a variable height figure-8 in flight. 

Figure 6.23 shows the open-loop/closed-loop paths. In this maneuver, the open-loop and 

closed-loop flight paths were very different. This can be seen in figure 6.23, the open-

loop path was not able to complete the whole maneuver. This is due to open-loop mode 

where the feedback circuits have been disconnected. One of the challenges of open-loop 
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mode is that not every maneuver can be successfully copied. The latter depends on the 

maneuver and on the sensitivity of the particular model to variations encountered when 

running in open-loop mode.  

 

 

 
Figure 6.23:  Figure-8 Variable Height (in flight loop) Closed Mode and Open Mode; 
Showing x, y, z  vs. Time Plot, with Blue being the Fuzzy-logic Controller (open-mode)  

Path and Pink being the Fuzzy-logic Controller (closed-mode) Path. 
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6.2.8 Variable Height Figure-8 Maneuver Testing Results 

 

 The comparison of the open-mode path and the GA/SA derived equations path is 

shown in figure (6.24). The same results are shown one axis at a time in figures (6.25), 

(6.26), and (6.27) respectively. Again, note that the VTOL model seems to be particularly 

sensitive to this flight maneuver. Even with high mapping accuracy, the flight path 

deviates at the end of the run.  

 

 
Figure 6.24:  Figure-8 Variable Height (in flight loop), GA/SA Path and  

 Fuzzy Logic Controller Path; with Blue being the Fuzzy-logic Controller Path 
(open-loop) and Pink being the Path Generated by the Derived Equations. 
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Figure 6.25:  Figure-8 Variable Height, x vs. Time Plot; with Blue being the Fuzzy-
logic Controller Path and Pink being the Path Generated by the Derived Equations.  
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Figure 6.26:  Figure-8 Variable Height, y vs. Time Plot; with Blue being the Fuzzy-
logic Controller Path and Pink being the Path Generated by the Derived Equations. 
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Figure 6.27:  Figure-8 Variable Height, z vs. Time Plot with Blue being the Fuzzy-
logic Controller Path and Pink being the Path Generated by the Derived Equations. 

 

 The variable height figure-8 flight path is compared with the set points, a PID 

Velocity Tracking controller, a PID Position Tracking controller, a MPC Position 

Tracking controller, the GA/SA equation controller path, and the fuzzy logic controller 

path. Figure 6.28 shows the flight paths of all the controllers running within MATLAB. 
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Figure 6.28: Figure-8 Variable Height Showing the GA/SA Derived Controller 
Compared to other Controllers Flying the Same Model/Set-points in MATLAB. 

        
6.3 Sample Output of GA/SA Algorithm 

 

 Figure 6.29 shows a sample output of a GA/SA algorithm as it generates control 

equations. The first column shows the elapsed time in seconds, the second column shows 

the actual signal f(x) from the fuzzy logic controller and the third column shows the 

generated signal f’(x). The last column shows the error. The error in some instances is 

zero. The full results tables will be shown in the appendix. 
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Figure 6.29:  Ascending Spiral Sample Result Showing Fit. The Sample Data Shows 

How Well the Signal is Being Duplicated, Column B is the Actual Signal while 
Column C is the Algorithm Generated Signal, and Column D Shows the Error. 
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6.4 Summary of Flight Path Error 

 

  This section summarizes flight path errors using graphs that show the deviation 

(in feet) of the flight path of each controller from the set-points. In addition, the average 

distance of each flight path from the set points for each maneuver is presented graphically 

and in a table. Of course, the set-points represent the intended path and each controller 

followed the intended path as best as it could. The distance from the set-points was 

calculated using a “Three-dimensional distance” formula or Euclidian Distance [102]. 

The formula defines distance between any two points in three dimensions as follows: 

 

Let A be some point in 3D space whose coordinates are: (x1, y1, z1)  

Let B be some point in 3D space whose coordinates are: (x2, y2, z2)  

 

The distance between the points A and B is then calculated as follows: 

 

Euclidian Distance = SQRT((x1 - x2)2 + (y1 -  y2) 2 + (z1 – z2) 2 )   

 

Where SQRT is the square root function. 

  

The path error is shown for each of the following controllers: 

 PID Velocity Tracking controller 

 PID Position Tracking controller   

 MPC Position Tracking controller   

 GA/SA derived equation controller  

 Fuzzy logic controller  

 

 Each maneuver will have 3 associated graphs, the first will show the three-

dimensional (3D) distance between the controllers and the set-points. The second graph 

will show the 3D distance between the fuzzy logic controller and the GA/SA derived 

control equations as they execute the same maneuver. The third graph is a bar graph that 



www.manaraa.com

 172

shows the average 3D distance between each controller and the set-points. The third 

graph will also show the average distance between the fuzzy logic controller and the 

GA/SA derived control equations. A table shows summarizes the last graph. The graphs 

are organized per maneuver.  

 

6.4.1 Figure-8 Flight Path Error Summary 

 

 The next three graphs and associated table summarize how well the Figure-8 

maneuver was executed by each of the controllers by comparing the 3D distance between 

each controller and the set-points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.30: Figure-8 Maneuver Showing the GA/SA Derived Equation Controller and 
Other Controllers Along With Their Respective Euclidean Distance from the Set-

points. 
 

 Figure 6.30 shows how well each of the controllers performed in following the 

set-points. Note that the GA/SA equation based controller follows the fuzzy logic 

controller’s flight path reasonably well and even when it deviates towards the middle of  

the maneuver, it still manages to shadow the fuzzy logic controller.  
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Figure 6.31: Figure-8 Maneuver Showing the Euclidian Distance of the GA/SA 
Derived Equation Controller Path from that of the Fuzzy Logic Controller Path 

(Baseline).  
 

  Note that in figure 6.31 the GA/SA derived equation controller does not keep up 

with the path of the fuzzy controller and deviates from that path by as much as 150 feet 

towards the end. 
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Figure 6.32: Figure-8 Maneuver Showing the GA/SA Based Equation Controller and 
Other Controllers Along With Their Respective Average Euclidean Distance from The 

Set-points.  
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 In figure 6.32 all controllers are shown along with their average Euclidian 

distance from the set-points for the whole maneuver. Note that the average Euclidian 

distance between the GA/SA derived control equations and the fuzzy logic controller is 

shown at the far right of the graph. Table 6.2 below shows the average Euclidian distance 

for each controller over the whole maneuver. 

 

Table 6.2: Summary of Figure-8 Path Errors in Relation to Set-points. 
(All figures are in feet). 

PID 
Velocity 
Tracking 

PID Position 
Tracking 

MPC 
Position 
Tracking 

GA/SA EQ Fuzzy Logic Avg Distance 
Fuzzy 

Controller to 
GA/SA EQ 

76.91881226 4.27307598 4.226641054 33.43756862 33.47859315 1.353576765 
 

 

6.4.2 U-Turn Flight Path Error Summary 

 

 The next three graphs and associated table summarize how well the U-Turn 

maneuver was executed by each of the controllers by comparing the 3D distance between 

each controller and the set-points. 
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Figure 6.33: U-Turn Maneuver Showing the GA/SA Based Equation Controller and 

Other Controllers Along With Their Respective Euclidean Distance from the Set-
points. 

 

 Figure 6.33 shows how well each of the controllers performed in following the 

set-points. Note that the equation based controller and the fuzzy logic controller’s flight 

paths are very close almost to the end of the maneuver. 
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Figure 6.34: U-Turn Maneuver Showing the Euclidian Distance of the GA/SA Derived 

Equation Controller Path from That of the Fuzzy Logic Controller Path (Baseline).  
 

 In figure 6.34 the GA/SA based control equations manage to follow the path of 

the fuzzy logic controller very well by showing zero error almost to the end. Note the 

deviation of approximately 12 feet at the end.  
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Figure 6.35: U-Turn Maneuver Showing the Average Euclidian Distance between the 
GA/SA Based Equation Controller and Other Controllers Along With Their Respective 

Average Euclidean Distance from the Set-points. 
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 In figure 6.35 all controllers are shown along with their average Euclidian 

distance from the set-points for the whole maneuver. Note that the average Euclidian 

distance between the GA/SA derived control equations and the fuzzy logic controller is 

shown at the far right of the graph. For this maneuver, this distance is minimal which 

indicates that the control equation based controller was able to duplicate the path of the 

fuzzy logic controller very well. Table 6.3 below shows the average Euclidian distance 

for each controller over the whole maneuver. 

 

 
Table 6.3: Summary of U-Turn Path Errors in Relation to Set-points.  

(All figures are in feet). 
PID 

Velocity 
Tracking 

PID 
Position 
Tracking 

MPC 
Position 
Tracking 

GA/SA EQ Fuzzy 
Logic 

Avg Distance 
Fuzzy Controller to 

GA/SA EQ 
9.358538 1.679473 1.667067 13.00326 13.00936 0.075266856 
 

 

6.4.3 Spiral-Up Flight Path Error Summary 

 

 The next three graphs and associated table summarize how well the Spiral-Up (or 

Spiral) maneuver was executed by each of the controllers by comparing the 3D distance 

between each controller and the set-points. 
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Figure 6.36: Spiral Maneuver Showing the GA/SA Based Equation Controller and 
Other Controllers Along With Their Respective Euclidean Distance from The Set-

Points. 
 

 Figure 6.36 shows how well each of the controllers performed in following the 

set-points. Note that the equation based controller and the fuzzy logic controller flight 

paths are indistinguishable from each other. 
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Figure 6.37: Spiral Maneuver Showing the Euclidian Distance of the GA/SA Derived 
Equation Controller Path from That of the Fuzzy Logic Controller Path (Baseline).  

 

  In figure 6.37 the GA/SA based control equations manage to follow the path of 

the fuzzy logic controller very well by showing zero error all the way to the end. Note 

that there is no significant deviation throughout the maneuver.  
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Figure 6.38: Ascending Spiral Maneuver Showing the GA/SA Based Equation 

Controller and Other Controllers Along With Their Respective Average Euclidean 
Distance From the Set-points. 

 

 In figure 6.38 all controllers are shown along with their average Euclidian 

distance from the set-points for the whole maneuver. Note that the average Euclidian 

distance between the GA/SA derived control equations and the fuzzy logic controller is 

shown at the far right of the graph. For this maneuver, this distance is 0 and does not 

show up on the graph which indicates that the control equation based controller was able 

to duplicate the path of the fuzzy logic controller almost exactly. Table 6.4 below shows 

the average Euclidian distance for each controller over the whole maneuver. 

 

Table 6.4: Summary of Ascending Spiral Path Errors in Relation to Set-points.  
(All figures are in feet). 

PID 
Velocity 
Tracking 

PID Position 
Tracking 

MPC 
Position 
Tracking 

GA/SA EQ Fuzzy Logic Avg Distance 
Fuzzy 

Controller to 
GA/SA EQ 

3.296512025 2.366273992 2.349485109 3.978934146 3.978934146 0 
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6.4.4 Variable Figure-8 Flight Path Error Summary 

 

 The next three graphs and associated table summarize how well the Variable 

Figure-8 maneuver was executed by each of the controllers by comparing the 3D distance 

between each controller and the set-points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.39: Figure-8 Variable Height Maneuver Showing the GA/SA Based Equation 
Controller and Other Controllers Along With Their Respective Euclidean Distance 

from the Set-points. 
 

 Figure 6.39 shows how well each of the controllers performed in following the 

set-points. Note that the GA/SA equation based controller follows the fuzzy logic 

controller’s flight path very well almost till the end. However, there is a significant 

deviation at the end of the maneuver.   
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Euclidean Distance Between Fuzzy Controller and GA/SA control functions
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Figure 6.40: Figure-8 Variable Height Showing the Euclidian Distance of the GA/SA 

Derived Equation Controller Path from that of the Fuzzy Logic Controller Path 
(Baseline).  

 

  In figure 6.40 the GA/SA based control equations manage to follow the path of 

the fuzzy logic controller very well by showing practically no error almost to the end. 

However, there is a sizable deviation of approximately 145 feet at the end.  
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Figure 6.41: Figure-8 Variable Height Maneuver Showing the GA/SA Based Equation 

Controller and Other Controllers Along With Their Respective Average Euclidean 
Distance from the Set-points. 

 

 In figure 6.41 all controllers are shown along with their average Euclidian 

distance from the set-points for the whole maneuver. Note that the average Euclidian 

distance between the GA/SA derived control equations and the fuzzy logic controller is 

shown at the far right of the graph. For this maneuver, the average distance is small 

which indicates that the control equation based controller was able to duplicate the path 

of the fuzzy logic controller reasonably well. Table 6.5 below shows the average 

Euclidian distance for each controller over the whole maneuver.  

 

Table 6.5: Summary of Figure-8 Variable Height Path Errors in Relation to Set-points. 
(All figures are in feet). 

PID Velocity 
Tracking 

PID 
Position 
Tracking 

MPC 
Position 
Tracking 

GA/SA 
EQ 

Fuzzy 
Logic 

Avg Distance 
Fuzzy 

Controller to 
GA/SA EQ 

75.69660426 4.4699805 4.43452685 35.989377 35.6338 4.42643287 
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 Table 6.6 summarizes the 3D error for each controller and flight maneuver. For 

the Figure-8 maneuver, the PID Position Tracking Controller had the lowest average 

error while the open-loop GA/SA equation was highest at almost twice the error rate. 

However, in the U-Turn maneuver, the PID Velocity tracking was about the same as the 

MPC Position Tracking Controller. The open-loop GA/SA control equations did about as 

well as the closed-loop Fuzzy Logic Controller. The last two maneuvers reflect similar 

results. The GA/SA based equations were able to duplicate the path of the Fuzzy Logic 

Controller very well. And since the GA/SA based control equations have no idea what 

the set-points are, the best they can do is to copy the performance of the Fuzzy Logic 

Controller, which they did very well for 3 out of 4 maneuvers. The GA/SA derived 

equation controller exhibited the highest mapping error with respect to the fuzzy logic 

controller on the Figure-8 maneuver.  

 

Table 6.6: Summary of Path Errors in Relation to Set-points, All Figures are in Feet. 

Flight 
Maneuver 

PID 
Velocity 
Tracking 

PID Position 
Tracking 

MPC 
Position 
Tracking 

GA/SA 
equation 

Fuzzy logic 

Figure-8 76.9188122 4.27307598 4.22664105 33.4375686 33.4785931 

U-Turn 9.358538 1.679473 1.667067 13.00452 13.00936 

Ascending 
Spiral 

3.29651202 2.366273992 2.34948510 3.97893414 3.97893414 

Figure-8, 
variable 
height 

75.6966042 4.4699805 4.43452685 35.989377 35.6338 

 

  

6.5 Testing Conclusion 

 

  The proposed method was successful in generating formulas that were able to 

duplicate the flight path of the fuzzy logic controller very well for all of the selected 

maneuvers. The data obtained demonstrated the following: The algorithm generated 

functions that were able to statically map the data to an accuracy rate of E-12% or better. 
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The generated formulas were given control of the virtual helicopter in MATLAB, and the 

formula based controller successfully flew the VTOL following the path of the fuzzy 

logic controller very well with an average Euclidian error of less than 1% as shown in 

table 6.7 below. 

 

Table 6.7: Summary of Euclidian Average Error of the GA/SA Controller with 
Relation to the Fuzzy Logic Controller. (All figures are in feet). 

Flight Maneuver GA/SA equation Fuzzy logic Error % 

Figure-8 33.4375686 33.4785931 0.122539498 

U-Turn 13.00452 13.00936 0.037203982 
Ascending Spiral 3.97893414 3.97893414 0 

Figure-8, 
variable height 

35.989377 35.6338 0.997864387 

  

 

6.6 Conclusion of Research 

 

  We have demonstrated a new equation-based VTOL control module that is 

generated by genetic or simulated annealing based search methods. The generated 

functions are able to fly a VTOL autonomously using flight time as the sole input. Hence, 

the control equations are able to fly the VTOL without requiring way-points or 

positioning data as other controllers do. The GA/SA search algorithm can be used to 

construct mathematical flight control formulas using datasets collected from a system 

under observation.  

 

  The derived functions model the actions of a source controller be it a human pilot, 

a PID controller, a fuzzy logic controller, or other automated pilot as they fly a virtual 

helicopter. The flight paths are non-aggressive maneuvers that include a figure-8, u-turn, 

ascending spiral, and variable height figure-8. The experimental results demonstrate that 

this methodology is capable of generating formulas that achieve an accuracy level of 
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about E-12% or better. This paper also presented a unique method for constructing and 

generating control formulas.  

 

  Since the proposed system does not need set-points to re-create a flight path, it 

has an advantage over other flight controllers that need this information to successfully 

complete a mission. Hence, this system may be used as a backup controller should the 

main flight controller become inoperable due to GPS failure or some other system error. 

This added layer of redundancy is useful and important especially with the current trend 

of aviation moving towards more and more unmanned aircraft. The number and price tag 

of UAVs continues to rise as they are used increasingly in civilian and military 

applications. Hence, a backup controller that is able to fly the VTOL home in open-loop 

mode presents an economic and strategic advantage by increasing the chances of 

recovering aircraft that may be otherwise lost.  

 

  Another advantage is the proposed method of using mathematical building blocks 

to generate formulas. The building blocks may be chosen and adjusted by a researcher 

which allows for further research and analysis of VTOL control modules to determine 

which input parameters and flight conditions affect the system. This approach may also 

have applications in modeling a control module for other autonomous vehicles such as 

ground rovers and submarines. Applications to planetary rovers may prove to be 

advantageous as these are especially susceptible to losing communication. The method 

proposed generates control signal formulas that achieve very good mapping and high 

accuracy as demonstrated by graphs presented in chapter 5. Since this algorithm can use 

observed data, control functions can be generated at anytime. Therefore, a VTOL that 

starts a new mission with new set-points can run this algorithm in the background so that 

it has a backup controller to take it home should an unexpected condition occur that 

prevents the main controller from functioning.  
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6.7 Discussion and Future Work 

 

  The method proposed would generate a set of control equations that are capable 

of flying a VTOL; this method can, potentially, be applied to other vehicle types. Hence, 

the pilot module is a machine that is capable of learning how to operate other machines 

without having to know anything about the design or construction of these machines. The 

proposed algorithm outlines an approach that can be used to develop a machine operator 

capable of learning maneuvers.  

 

  The data shows that the algorithm indeed generates valid functions and that the 

algorithm performs well. It is important to note that the MATLAB environment did not 

include wind and temperature factors that may affect the performance of the generated 

functions. Wind and external factors that affect the stability of the aircraft were assumed 

to be a part of an external stabilizing module such a gyro-based stabilization system. The 

latter insures that when there are not inputs to the VTOL it stays stable and does not drift. 

This should allow the generated functions to run the VTOL as successfully as they did in 

simulation.  
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Appendix A: Graphs of Control Signals  
 
Set 1: figure 8 in flight, all 4 control signals are shown below, with the x axis represents 

time. The time is sampled for a total of 201 samples. The y axis shows the actual value of 

the control signal. Note that this is a MATLAB internal value and has no unit. 
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Figure A.1:  Figure 8 (In Flight Loop) Showing All 4 Control Signals; Note the y Axis 
has no Units as These are the Actual Numerical Values Supplied to the VTOL Within 

the MATLAB Model. 
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Appendix A: (Continued) 
 

Set 2: U-Turn in flight, all 4 control signals are shown below, with the x axis being the 

sample number for a total of 201 samples and the y axis showing the actual value. 
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Figure A.2:  U-Turn showing All 4 Control Signals; Note the y Axis has no Units as 
These are the Actual Numerical Values Supplied to the VTOL 
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Appendix A: (Continued)  
 
Set 3: Ascending Spiral, all 4 control signals are shown below, with the x axis being the 

sample number for a total of 30 samples and the y axis showing the actual value. 
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Figure A.3:  Ascending Spiral Showing All 4 Control Signals; Note the y Axis has no 
Units as These are the Actual Numerical Values Supplied to the VTOL 
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Appendix A: (Continued) 
 

Set 4: Variable height figure 8, all 4 control signals are shown below, with the x axis 

being the sample number for a total of 30 samples and the y axis showing the actual 

value. 
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Figure A.4:  Variable Height Figure 8 Showing All 4 Control Signals; Note the y Axis 
has no Units as These are the Actual Numerical Values Supplied to the VTOL 

 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 202

Appendix B: Brief VTOL History 
 
B.1 List of Notable VTOL Development  
 

1. Earliest VTOL discussed in 1928, by Nikola Tesla; Tesla received patents for a 

machine called the "Flivver" or an apparatus for aerial transportation. This is considered 

one of the earliest VTOL examples. 

2. German designers, in World War II, conducted studies on possible VTOL designs and 

drew up designs for the Heinkel Lerche; however, it was never built. 

3. In 1953, Rolls-Royce developed a ‘Thrust Measuring Rig’ or ‘flying bedstead’. This 

machine lead to the development of  British VTOL engines that were used in the Short 

SC.1 (1957); This VTOL used 4 vertical lift engines and used an additional engine for 

horizontal thrust. 

4. Later, scientist explored the idea of using the same engine for both vertical and 

horizontal thrust by changing the vectoring of the thrust. This effort resulted in the Bristol 

Siddeley Pegasus engine; this engine used rotating ducts to control the direction of thrust. 

Also developed at the same time, was the Hawker P.1127 airframe, which was later 

produced as the Hawker Siddeley Harrier. Note that the supersonic Hawker Siddeley 

P.1154 effort was discontinued in 1965. 

5. The British Harrier aircraft has a STOVL flight mode that allows it to carry a higher 

fuel or weapon load. The Marine Corps, Italian Navy and the Spanish Navy use an 

advanced Harrier model called the AV-8 Harrier II. However, the Harrier II is outdated 

and its planned replacement is a variant of the F-35 Joint Strike Fighter modified to 

operate in STOVL mode. 

6. The National Aeronautics and Space Agency (NASA) has also been involved in 

VTOL research and has operated VTOL aircraft such as the XV-15 (1977); The Soviet 

Navy tested a Sikorsky aircraft named the X-Wing, which can take off like a helicopter 

and then the rotors would become stationary in horizontal flight functioning as wings and 

producing lift. Additional lift is also provided by the static wings. The US tested a similar 

aircraft named the Canard Rotor/Wing prototype or Boeing X-50. 
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Appendix B: (Continued) 

 

7. The French developed an updated version of the Dassault Mirage III in the 1960s; this 

plane was capable of reaching Mach 1. The Dassault Mirage III - V Balzac is able to 

transition from vertical to horizontal flight; this plane was tested in March of 1966 and 

was able to reach speeds of Mach 1.3 in level flight. 

8. The Soviet Union at the height of the Cold War was working on many VTOL type 

aircraft such as the Yak-38 Forger which was a modified Yak-36 Freehand experimental 

plane. Shortly before the collapse of Soviet Union, a supersonic VTOL plane was 

developed to replace the Yak-38; this plane was called the Yak-141. The Yak-141 is also 

known as the Yak-41 was later developed into the Yak-43. 

9. Germany during the late 1960s and early 1970s was working on three different VTOL 

planes. The first F-104 was used as a base for researching V/STOL planes. Eventually, 

two models were completed as the X1 and X2. However, the project was later canceled 

due funding and political issues at the time. The EWR VJ 101C aircraft managed to 

operate as a VTOL completing take-offs and landings as well as reaching level speeds of 

mach 1 and higher.  One example is preserved in the Deutsches Museum in Munich, 

Germany and can be seen till this day. Figure B.1 shows a V/STOL VJ101. The Germans 

also developed a VFW-Fokker VAK 191B light fighter and the Dornier Do 31E-3 which 

was designed as a troop transport. These two prototypes are also preserved at the 

Deutsches Museum branch at Oberschleißheim Airfield. 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 204

Appendix B: (Continued) 

 

 

 
 

Figure B.1: A German V/STOL VJ101 "Starfighter.” (source: 
http://content.answers.com/main/content/wp/en-commons/thumb/0/09/180px-

Aircraft_VJ101C_top.jpp ) 
 

10. The Moller Skycar was designed as a personal air vehicle or (PAV). However it has 

not been able to transition to level flight; neither has it carried any pilots on board. 

11. Since spacecraft operate in environments that have virtually no runways, 

extraterrestrial missions also require VTOL designs; one interesting example is the 

LLRV. 

12. The US Marines required a more advanced transport to replace their UH-60 Black 

Hawk helicopter. The V-22 Osprey (Figure B.2) was designed as its possible replacement 

and is the first production tilt-rotor aircraft in the world. It has one three-bladed prop-

rotor, turboprop engine along with a transmission nacelle on each wingtip. The Osprey is 

classified as a joint service, multimission, military tilt-rotor aircraft that has vertical 

takeoff and landing (VTOL) capabilities along with short takeoff and landing capability 

(STOL).  
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Appendix B: (Continued) 

 

 
 

Figure B.2: V-22 Osprey. Picture Shows Marines Jumping. (source: 
http://content.answers.com/main/ content/wp/en/thumb/a/af/ 180px-

Aircraft.osprey.678pix.jpg) 
 

13. A new Joint Strike Fighter (JSF) plane being developed is the X-35B, which has 

STOVL capabilities as it is able to take off in less than 500 feet. It also has supersonic 

and vertical landing capability. The JSF program was created to with the intent of 

keeping development and production cost down by building three variants of one aircraft 

that share about 80% of their parts. The demonstrator X-35 aircraft originally flew in 

2000; a production version of this plane made its maiden flight on 15 December 2006. An 

X-35B showing the lift fan is demonstrated in figure B.3. 

 

 The three variants are:  

 F-35A: This is a conventional takeoff and landing (CTOL) aircraft.  

 F-35B: This is a short-takeoff and vertical-landing (STOVL) aircraft.  

 F-35C: This is a carrier-based aircraft. 
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Appendix B: (Continued) 

 

 
 

Figure B.3: X-35B Showing Lift Fan (source: 
http://upload.wikimedia.org/wikipedia/commons/thumb/7/78/F-l3_lift_fan.jpg 

/180px-F-l3_lift_fan.jpg ) 
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Appendix C: Run Time Analysis of GA/SA Algorithm 
 
 
   The theory of computer complexity deals with the relative computational effort 

required to solve computable functions. The term Computable functions, also knows as 

Turing-computable functions, refers to the basic unit of study in the filed of 

computability theory. The advantage of using the theory Computable functions is in the 

ability to evaluate and quantify computability without the need for a concrete “model of 

computation”. Hence, Turing machines and register machines are examples of theoretical 

operations that can be used to evaluate the complexity of a given algorithm.  Church-

Turing describes computable functions as functions that can be calculated with a 

mechanical device provided that there is an unlimited amount of time along with an 

endless supply of storage space. His thesis concludes that if a function is said to have an 

algorithm then it is computable. 

 

  An abstract computational complexity theory may be modeled on the Blum 

axioms; the latter means that the task of determining the computational complexity 

becomes a function problem. This is different from computability theory, which is used 

to determine if a  problem is solvable, independent of the resources needed. More 

formally, the time complexity of a problem is defined as the number of steps that will be 

needed to solve a specific instance of the problem expressed as a function of  the input 

size. It is also assumed that the most efficient algorithm available is used to solve the 

function. Hence the time complexity represents the best case or optimal performance time 

to solve that specific problem. As such, if an instance of problem A, for example, has n 

bits (input size) and needs n² steps to solve then it is considered to have a time 

complexity of n². However, the computer language used to implement an algorithm can 

make a difference in exact the number of steps. In order to avoid needless details, a 

format known as the Big O notation (also know as order of calculation) is used to 

describe the time complexity of a specific algorithm. Hence, Big O notation of O(n²) 

indicates that a given algorithm will have the same time complexity on most computers.  
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Appendix C: (Continued) 

 

  Complexity can vary, for example, a linear time complexity indicates that as the 

input grows bigger, the computational time increase linearly. However, the time it takes 

to find an entry in a dictionary is logarithmic because even if the size of the dictionary 

doubles (doubling the input), the larger size will only increase the computational time by 

one step. As soon as the dictionary is opened in the middle, the problem size becomes 

half of what it was. Generally, different classes of computational time for sufficiently 

large values of n can be summarized as follows: 

  

log n < n < n log n < n2 < n3 < 2n  
 

   In addition, algorithms of different computational complexities are affected 

differently by an increase in CPU or computational speed as shown in table C.1. For 

example, linear order algorithms have a linear relation to speed. However, exponential 

algorithm run times are hardly affected by even computers that are 1000 times faster. 

 

Table C.1: Computational Complexity Classes.  (source: 
http://en.wikipedia.org/wiki/Computational_complexity_theory) 

 

Size of Largest Problem Instance solvable in 1 Hour Time complexity 
function 

With present 
computer 

With computer 100 
times faster 

With computer 
1000 times faster 

n N1 100N1 1000N1 

n2 N2 10 N2 31.6 N2 

n3 N3 4.64 N3 10 N3 

2n N4 N4+6.64 N4+9.97 

3n N5 N5+4.19 N5+6.29 
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Appendix C: (Continued) 

 
Time Complexity Calculation for the GA/SA Algorithm. 
 
Let: 
 
 n = number of input rows 
   
 T = Annealing Temperature or Number of Generations  
  
The pseudo code for the algorithm becomes: 
  
 for (row = 0 to n; n+s) where n = number of rows and s = number of steps  
     for (time = 0 to t) where t is 20,000 (or some fixed number), note number of 
generations can be substituted for time. 
           (n/s) * t  for sufficiently large values of n, s is small and t can be treated as a 
constant value or  c  
 
Hence, the calculation becomes: 
 
n * c = O(n)  
        

   In other words, the GA/SA algorithm is a first polynomial algorithm. This class 

of algorithms benefits the most from technological advancements that result in increased 

computational speed. This can be seen in table C.1 where the effects of faster computers 

on computing speed are shown.  
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